• 제목/요약/키워드: Pre-Classification

Search Result 641, Processing Time 0.031 seconds

Development of segmentation-based electric scooter parking/non-parking zone classification technology (Segmentation 기반 전동킥보드 주차/비주차 구역 분류 기술의 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.125-133
    • /
    • 2023
  • This paper proposes an AI model that determines parking and non-parking zones based on return authentication photos to address parking issues that may arise in shared electric scooter systems. In this study, we used a pre-trained Segformer_b0 model on ADE20K and fine-tuned it on tactile blocks and electric scooters to extract segmentation maps of objects related to parking and non-parking areas. We also presented a method to perform binary classification of parking and non-parking zones using the Swin model. Finally, after labeling a total of 1,689 images and fine-tuning the SegFomer model, it achieved an mAP of 81.26%, recognizing electric scooters and tactile blocks. The classification model, trained on a total of 2,817 images, achieved an accuracy of 92.11% and an F1-Score of 91.50% for classifying parking and non-parking areas.

A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries (농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석)

  • Kwon, Soo-Kyung;Kim, Kyoung-Min;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.291-304
    • /
    • 2021
  • Updating a forest type map is essential for sustainable forest resource management and monitoring to cope with climate change and various environmental problems. According to the necessity of efficient and wide-area forestry remote sensing, CAS500-4 (Compact Advanced Satellite 500-4; The agriculture and forestry satellite) project has been confirmed and scheduled for launch in 2023. Before launching and utilizing CAS500-4, this study aimed to pre-evaluation the possibility of satellite-based tree species classification using RapidEye, which has similar specifications to the CAS500-4. In this study, the study area was the Chuncheon forest management complex, Gangwon-do. The spectral information was extracted from the growing season image. And the GLCM texture information was derived from the growing and non-growing seasons NIR bands. Both information were used to classification with random forest machine learning method. In this study, tree species were classified into nine classes to the coniferous tree (Korean red pine, Korean pine, Japanese larch), broad-leaved trees (Mongolian oak, Oriental cork oak, East Asian white birch, Korean Castanea, and other broad-leaved trees), and mixed forest. Finally, the classification accuracy was calculated by comparing the forest type map and classification results. As a result, the accuracy was 39.41% when only spectral information was used and 69.29% when both spectral information and texture information was used. For future study, the applicability of the CAS500-4 will be improved by substituting additional variables that more effectively reflect vegetation's ecological characteristics.

The Effect of Domain Specificity on the Performance of Domain-Specific Pre-Trained Language Models (도메인 특수성이 도메인 특화 사전학습 언어모델의 성능에 미치는 영향)

  • Han, Minah;Kim, Younha;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.251-273
    • /
    • 2022
  • Recently, research on applying text analysis to deep learning has steadily continued. In particular, researches have been actively conducted to understand the meaning of words and perform tasks such as summarization and sentiment classification through a pre-trained language model that learns large datasets. However, existing pre-trained language models show limitations in that they do not understand specific domains well. Therefore, in recent years, the flow of research has shifted toward creating a language model specialized for a particular domain. Domain-specific pre-trained language models allow the model to understand the knowledge of a particular domain better and reveal performance improvements on various tasks in the field. However, domain-specific further pre-training is expensive to acquire corpus data of the target domain. Furthermore, many cases have reported that performance improvement after further pre-training is insignificant in some domains. As such, it is difficult to decide to develop a domain-specific pre-trained language model, while it is not clear whether the performance will be improved dramatically. In this paper, we present a way to proactively check the expected performance improvement by further pre-training in a domain before actually performing further pre-training. Specifically, after selecting three domains, we measured the increase in classification accuracy through further pre-training in each domain. We also developed and presented new indicators to estimate the specificity of the domain based on the normalized frequency of the keywords used in each domain. Finally, we conducted classification using a pre-trained language model and a domain-specific pre-trained language model of three domains. As a result, we confirmed that the higher the domain specificity index, the higher the performance improvement through further pre-training.

Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach (사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구)

  • Chang, Nam-Sik
    • Information Systems Review
    • /
    • v.7 no.2
    • /
    • pp.23-40
    • /
    • 2005
  • Discovering customers' behavioral patterns from large data set and providing them with corresponding services or products are critical components in managing a current business. However, the diversity of customer needs coupled with the limited resources suggests that companies should make more efforts on understanding and managing specific groups of customers, not the whole customers. The key issue of this paper is based on the fact that the behavioral patterns extracted from the specific groups of customers shall be different from those from the whole customers. This paper proposes the idea of pre-segmentation before developing customer classification models. We collected three customers' demographic and transactional data sets from a credit card, a tele-communication, and an insurance company in Korea, and then segmented customers by major variables. Different churn prediction models were developed from each segments and the whole data set, respectively, using the decision tree induction approach, and compared in terms of the hit ratio and the simplicity of generated rules.

Improvement of Environmental Sounds Recognition by Post Processing (후처리를 이용한 환경음 인식 성능 개선)

  • Park, Jun-Qyu;Baek, Seong-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.31-39
    • /
    • 2010
  • In this study, we prepared the real environmental sound data sets arising from people's movement comprising 9 different environment types. The environmental sounds are pre-processed with pre-emphasis and Hamming window, then go into the classification experiments with the extracted features using MFCC (Mel-Frequency Cepstral Coefficients). The GMM (Gaussian Mixture Model) classifier without post processing tends to yield abruptly changing classification results since it does not consider the results of the neighboring frames. Hence we proposed the post processing methods which suppress abruptly changing classification results by taking the probability or the rank of the neighboring frames into account. According to the experimental results, the method using the probability of neighboring frames improve the recognition performance by more than 10% when compared with the method without post processing.

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

A Pre-processing Study to Solve the Problem of Rare Class Classification of Network Traffic Data (네트워크 트래픽 데이터의 희소 클래스 분류 문제 해결을 위한 전처리 연구)

  • Ryu, Kyung Joon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.411-418
    • /
    • 2020
  • In the field of information security, IDS(Intrusion Detection System) is normally classified in two different categories: signature-based IDS and anomaly-based IDS. Many studies in anomaly-based IDS have been conducted that analyze network traffic data generated in cyberspace by machine learning algorithms. In this paper, we studied pre-processing methods to overcome performance degradation problems cashed by rare classes. We experimented classification performance of a Machine Learning algorithm by reconstructing data set based on rare classes and semi rare classes. After reconstructing data into three different sets, wrapper and filter feature selection methods are applied continuously. Each data set is regularized by a quantile scaler. Depp neural network model is used for learning and validation. The evaluation results are compared by true positive values and false negative values. We acquired improved classification performances on all of three data sets.

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.35-46
    • /
    • 2023
  • In this study, we propose a Dual Approach methodology to enhance the accuracy of document classifiers by utilizing both contextual and keyword information. Firstly, contextual information is extracted using Google's BERT, a pre-trained language model known for its outstanding performance in various natural language understanding tasks. Specifically, we employ KoBERT, a pre-trained model on the Korean corpus, to extract contextual information in the form of the CLS token. Secondly, keyword information is generated for each document by encoding the set of keywords into a single vector using an Autoencoder. We applied the proposed approach to 40,130 documents related to healthcare and medicine from the National R&D Projects database of the National Science and Technology Information Service (NTIS). The experimental results demonstrate that the proposed methodology outperforms existing methods that rely solely on document or word information in terms of accuracy for document classification.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.