• Title/Summary/Keyword: Practical load

Search Result 958, Processing Time 0.031 seconds

Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges (신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가)

  • Cho, Hyo-Nam;Choi, Young-Min;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration (불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템)

  • Song, Joon-Hyuk;Yang, Sung-Mo;Kang, Hee-Yong;Yu, Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

An Expert System for Security Assessment in Distribution System (배전계토에서의 안전도 평가를 위한 전문가 시스)

  • Park, Byoung-youn;Kim, Se-Ho;Moon, Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.179-188
    • /
    • 1994
  • This paper deals with implementation of an expert system to obtain an optimal plan of load transfer for fault restoration with the capability of security monitoring and assessment in distribution systems. Based on the technique of load transfer tree analysis, the proposed expert system can afford to assist system operators in proposing an optimal plan of load transfer for fault restoration, In paticular, an application of the proposed ES to practical distribution systems yields an optimal load transfer plan which ensures system security by considering security assessment for contingency of feeders and main transformers in the knowledge based sense.

A Study on Development of Algorithm and Load Balancing for detail scheduling (소일정 계획 수립을 위한 부하조정과 알고리즘 개발에 관한 연구)

  • 김정자;김상천;공명달
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.241-251
    • /
    • 1998
  • There are two methods of load balancing for detail scheduling : One method is to generate an initial schedule and obtain an improved final schedule by load balancing only during a specific period. The other method is to generate an initial schedule and obtain an improved schedule by load balancing from current date(TIMENOW) to unlimited time with the whole manufacturing processes. This paper proposes an algorithm for detail scheduling which can be a practical solution in job shop production or project job type by applying the former method.

  • PDF

Assessment of Reliability and Load Carrying Capacity of Aged Wharf Structure of Pier Type (노후된 잔교식 부두의 신뢰성 및 내하력 평가)

  • 조효남;김성훈;김종규;이승재;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.71-78
    • /
    • 1994
  • The main objectives of the study may be stated as follows : \circled1 the acquisition of fundamental updated data for the assessment of aged wharf structures of pier type based on systematic static/dynamic load testing \circled2 the study of techniques and methods for field testing \circled3 realistic safety and load carrying capacity assessment based on practical reliability analysis. In this study field testing of real structure is performed and the results are compared with those of the 2D and 3D linear structural analysis. It may be seen that the practical reliability methods can be applied for the safety and capacity assessment of aged wharf structures of pier type.

  • PDF

Practical Nonlinear FE Analysis of Concrete Beam Considering Material Nonlinearity (재료비선형을 고려한 콘크리트 보의 실용적인 유한요소해석)

  • Chung, Won-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.778-783
    • /
    • 2006
  • This study investigates the ultimate behavior of reinforced concrete beams by means of practical nonlinear finite element (FE) analyses. Uniaxial constitutive models for the concrete and steel material are selected in this study. The adopted material model is integrated into the ABAQUS fiber beam elements through a user-defined material subroutine (UMAT). Within a developed nonlinear finite element framework, the FE results have been compared to experimental results reported by other researchers. It has been found that the proposed finite element model is capable of predicting the initial cracking load level, the yield load, the ultimate load, and the crack distribution with acceptable accuracy.

A study of the rail and bridge stability according to rail conditions on the bridge (교량상 레일 조건에 따른 레일 및 교량의 안전성 연구)

  • Min, Kyung-Ju;Kim, Young-Kook;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.505-515
    • /
    • 2009
  • In railway bridges, various loads including train load, transverse load and braking force are applied to continuous CWR or semi-continuous longer rail located on non-continuous bridge superstructures. The rail-girder interaction due to thermal expansion is also very complex in railway bridges because the thermal characteristics for each of the rails and girder are quite different. Recently, the bridge retrofits for seismic loads were performed on bridges not designed for these loads. These retrofits may however have limitations with respect to rail-girder interactions because, in general these retrofits address issues related only to seismic loads. In this study of seismic evaluations for railway bridges, the load effects on the bridge rails from the road beds through the continuous rails shall be considered. Practical methods will be proposed which will increase the railway stability. For this, rail-girder interaction analyses due to train loads, temperature changes and seismic loads were performed and the results reviewed from a practical point of view.

  • PDF

A study on fatigue fracture under non-constant load (불균일 하중을 받는 피로 파괴에 관한 연구)

  • Cho, Jae-Ung;Lee, Eun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.286-291
    • /
    • 2004
  • There are fatigue fractures at the practical area. The fatigue load happens non- constantly. As it is impossible to be predicted, it can not be known when the fracture happens. Non -constant fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by the program of Ansys workbench. These results are greatly applied as the practical structures to predict the prevention of failure and the endurance.

  • PDF

A Novel Line Stability Index for Voltage Stability Analysis and Contingency Ranking in Power System Using Fuzzy Based Load Flow

  • Kanimozhi, R.;Selvi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.694-703
    • /
    • 2013
  • In electric power system, the line stability indices adopted in most of the instances laid stress on variation of reactive power than real power variation of the transmission line. In this paper, a proposal is made with the formulation of a New Voltage Stability Index (NVSI) which originates from the equation of a two bus network, neglecting the resistance of transmission line, resulting in appreciable variations in both real and reactive loading. The efficacy of the index and fuzzy based load flow are validated with IEEE 30 bus and Tamil Nadu Electricity Board (TNEB) 69 bus system, a practical system in India. The results could prove that the identification of weak bus and critical line in both systems is effectively done. The weak area of the practical system and the contingency ranking with overloading either line or generator outages are found by conducting contingency analysis using NVSI.

A study on fatigue fracture under non-constant load (불균일 하중을 받는 피로 파괴에 관한 연구)

  • Cho Jae-Ung;Lee Eun-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.100-102
    • /
    • 2004
  • There are fatigue fractures at the practical area. The fatigue load happens non- constantly. As it is impossible to be predicted, it can not be known when the fracture happens. Non -constant fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by the program of Ansys workbench. These results are greatly applied as the Practical structures to Predict the prevention of failure and the endurance.

  • PDF