• Title/Summary/Keyword: Ppy

Search Result 212, Processing Time 0.03 seconds

Electrochemical Properties of Polypyrrole Nanotubules and it's Application to Lithium Secondary Batteries (Polypyrrole Nanotubules의 전기화학적 특성과 리튬 2차전지 정극으로 응용)

  • 김민성;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.339-342
    • /
    • 2000
  • Polypyrrole(PPy) nanotubules were formed within template pores by chemical synthesis using $FeCl_3$ as an oxidant. The oxidation peak of PPy nanotubules in the cyclic voltammogram was observed at about 2.8V and 3.3V vs. $Li/Li^+$, while in the case of PPy film, that was observed at about 3.0V. It suggests that the electron hopping on the main chain of PPy nanotubules was improved. When the PPy nanotubules was used to a cathode of lithium secondary battery, we obtained discharge capacity as much as 27 mAh/g, and initial coulomb efficiency by 90%. We expect that the capacity can be improved by further study.

  • PDF

Electrochemical Properties of Polypyrrole Nanotubules Enzyme Electrode Immobilized with Glucose Oxidase (포도당 산화효소가 고정화된 Popyrrole Nanotubules 효소전극의 전기화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.909-912
    • /
    • 2000
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer within the pores of a polycarbonate template. The electrochemical behavior was investigated using cyclic voltammetry. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. By electrochemical doping of glucose oxidase (GOx) on PPy nanotubules, an enzyme electrode has been fabricated. The kinetic parameter of biochemical reaction with glucose was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 11.4 mmol $dm^3$ and 170.85 A respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film.

  • PDF

Characteristics of Potentiometric Urea Sensors Based on Poly(3-methylthiophene) and Polypyrrole Constructed by Electropolymerization (Poly(3-methylthiophene)과 Polypyrrole을 전기 중합하여 제작한 전위차 요소센서의 특성 비교)

  • Park, Su-Hyun;Jin, Joon-Hyung;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1660-1663
    • /
    • 1999
  • 혈액 내의 요소 농도는 신장병 진단의 척도로서 정확한 측정이 필요하다. 요소의 농도는 전위차법을 이용하여 정확히 검출할 수 있으며 이를 위하여 효소를 고정화시킨 전극형 센서를 사용하였다. 전도성 고분자로서 P3MT(Poly(3-methylthiophene) )와 PPy(polypyrrole)를 효소 고정화에 이용하였다. PPy는 전기적 특성이 좋고 중합 및 효소의 고정화가 용이하며 중합 과정이 상대적으로 신속하고 비용도 저렴하다는 장점은 있으나. 다소 불안정하다. P3MT는 PPy와 마찬가지로 전극 상에 단량체가 전기적 산화에 의하여 중합되고 일반적으로 전해질 이온이 도우핑된 상태나 도우핑 되지 않은 상태 모두에서 산소. 습도. 온도에 대하여 매우 안정하다. 본 연구에서는 3-methylthiophene과 pyrrole을 전기 중합하여 urease를 고정화한 요소센서의 특성(감도, 안정성, 직선성)을 비교하였다. P3MT를 이용한 센서와 PPy를 이용한 센서 각각에 대해 감도는 P3MT가 32.3mV/decade, PPy가 4.7mV/decate로서 P3MT가 우수하였고 직선성도 보다 뛰어났으며 순환 전압 전류 곡선을 분석한 결과 P3MT가 PPy보다 안정성도 우수한 특성을 보였다.

  • PDF

Capacitance Properties of the Polypyrrole Films Electropolymerized in Different Electrolyte Solutions (전해 중합에 따른 폴리피롤 필름의 캐페시턴스 특성)

  • Park Ho Chul;Noh Kun Ae;Kim Jong Huy;Ko Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.94-97
    • /
    • 2001
  • Electro-conducting Polypyrrole(PPy) films were Prepared by applying constant current in various electrolytes solutions and their capacitance properties were investigated using cyclic voltammetry. Capacitance values were strongly dependent on the electrolytes solution used in electrochemical polymerization. PPy prepared in PC/AN mixture solution containing 0.5M $LiClO_4$ with small amount water showed 401 F/g and that electrogenerated in $AN/H_2O$ mixture solution containing 0.5M $LiClO_4$ retained $70\%$ of initial capacitance after 2000 cycles.

Characteristics of controlled drug release using conductive polymer electrochemically polymerized on multi-electrodes (다중 전극에 전기 중합한 전도성 고분자를 이용한 선택적 약물방출 특성)

  • Song, Tae-Eun;Chang, Jong-Hyeon;Son, Ji-Hee;Yang, Sang-Sik;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.278-280
    • /
    • 2004
  • 본 논문의 내용은 다중전극에 전기 중합한 전도성 고분자를 이용하여 약물을 결합한 후 전압 인가에 의한 선택적인 약물방출을 구현하는 것이다. Glass wafer에 anode와 cathode 전극을 제작하고 4개의 anode 전극면에 각각 전기중합으로 전도성 고분자막을 합성하였다. 양이온성 약물인 lidocaine을 결합할 수 있도록 피롤과 함께 도펀트로써 분자량이 큰 DBS를 사용하였으며 고분자막의 이온출입원리를 이용하여 약물을 결합하고 방출하였다. Cyclic voltammogram로부터 PPy(DBS) Polypyrrole (dodecylbenzene sulfonate) 전극의 산화 환원특성 및 전극면에 PPy(DBS) 막이 생성되기 위한 조건을 확인하였고, 그 결과를 토대로 PPy(DBS)막을 3전극 시스템과 Coulometry를 이용하여 전압을 인가하여 합성하였고, 합성전하량으로 부터 PPy(DBS)막의 두께를 알 수 있었다. Lidocaine의 결합 및 방출 시에도 정전압을 이용하였으며 약물의 방출 유무를 확인하기 위하여 UV spectrometer를 사용하였다. 다중전극에 PPy(DBS)막을 1.5um 두께로 합성한 후 lidocaine을 결합시키고 선택적으로 약물을 방출한 결과 각각의 PPy(DBS)막으로부터 $1.4{\sim}1.7mg$의 약물이 방출됨을 확인 할 수 있었다.

  • PDF

Phosphorescent Organic Light Emitting Diodes using the Emission Layer of (TCTA/$TCTA_{1/3}TAZ_{2/3}/TAZ):Ir(ppy)_3$ ((TCTA/$TCTA_{1/3}TAZ_{2/3}/TAZ):Ir(ppy)_3$ 발광층을 이용한 녹색 인광소자)

  • Jang, J.G.;Shin, S.B.;Shin, H.K.;Kim, W.K.;Ryu, S.O.;Chang, H.J.;Gong, M.S.;Lee, J.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.33-35
    • /
    • 2008
  • We have fabricated and evaluated new high efficiency green light emitting phosphorescent devices with an emission layer of $[TCTA_{1/3}TAZ_{2/3}/TAZ]:Ir(ppy)_3$. The whole experimental devices have the basic structure of $2-TNATA(500 {\AA})/NPB(300{\AA})/EML(300{\AA})/BCP(50{\AA})/SFC137(500{\AA})$ between anode and cathode. We have also fabricated conventional phosphorescent devices with emission layers of $(TCTA_{1/3}TAZ_{2/3}):Ir(ppy)_3$ and $(TCTA/TAZ):Ir(ppy)_3$ and compared their electroluminescence characteristics with those of the device with an emission layer of $(TCTA/TCTA_{1/3}TAZ_{2/3}/TAZ):Ir(ppy)_3$. The current density(J), luminance(L), and current efficiency($\eta$) of the device with an emission layer of $(80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ):10%-Ir(ppy)_3$ were 95 $mA/cm^2$, 25000 $cd/m^2$, and 27 cd/A at an applied voltage of 10V, respectively. The maximum current efficiency was 52 cd/A under the luminance of 400 $cd/m^2$. The peak wavelength and FWHM(full width at half maximum) in the electroluminescence spectral were 513nm and 65nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de l'Eclairage) chart. Under the luminance of 15000 $cd/m^2$, the current efficiency of the device with an emission layer of $(80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ):10%-Ir(ppy)_3$ was 34 cd/A, which has been improved 1.7 times and 1.4 limes compared to those of the devices with emission layers of $(300{\AA}-TCTA_{1/3}TAZ_{2/3}): 10%-Ir(ppy)_3$ and $(100{\AA}-TCTA/200{\AA}-TAZ):10%-Ir(ppy)_3$, respectively.

  • PDF

Electrochemical Properties of Polypyrrole/Polyfuran Polymer Composite Electrode (피롤/퓨란 고분자 복합체 전극의 전기화학적 성질)

  • Cha, Seong Keuck
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.664-671
    • /
    • 1998
  • Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morophology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobisity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer composite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where $PF_6^-,\; BF_4^-$, and $ClO_4^-$ ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with $PF_6^-$ was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer.

  • PDF

High Efficiency Green Phosphorescent Organic Light Emitting Devices using the Emission Layer of (TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 ((TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 발광층을 이용한 고효율 녹색 인광소자)

  • Jang, Ji-Geun;Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki;Ryu, Sang-Ouk;Chang, Ho-Jung;Gong, Myoung-Seon;Lee, Jun-Yeob
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.347-351
    • /
    • 2008
  • We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [$TCTA/TCTA_{1/3}TAZ_{2/3}/TAZ$] : $Ir(ppy)_3$ were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of ($TCTA_{1/3}TAZ_{2/3}$) : $Ir(ppy)_3$ and (TCTA/TAZ) : $Ir(ppy)_3$. The current density, luminance, and current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90^{\circ}{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ were $95\;mA/cm^2$, $25000\;cd/m^2$, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of $400\;cd/m^2$. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of $15000\;cd/m^2$, the current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of ($300{\AA}-TCTA_{1/3}TAZ_{2/3}$) : 10%-$Ir(ppy)_3$ and ($100{\AA}-TCTA/200{\AA}$-TAZ) : 10%-$Ir(ppy)_3$, respectively.

Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure (코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작)

  • Jun, Tae-Sun;Lee, Sungho;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

Color Tuning of OLEDs Using the Ir Complexes of White Emission by Adjusting the Band Gap of Host Materials

  • Seo, Ji-Hyun;Kim, In-June;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Sik;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.18-21
    • /
    • 2008
  • We report on white organic light-emitting diodes (WOLEDs) based on single white dopants, $Ir(pq)_2$($F_2$-ppy) and $Ir(F_2-ppy)_2$(pq), where $F_2$-ppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively. The similar phosphorescent lifetime of two ligands lead to luminescence emission in two ligands simultaneously. However, the emission color of the devices was reddish, because the energy was not transferred efficiently from the 4,4,N,N'-dicarbazolebiphenyl (CBP) to the $F_2$-ppy ligand, due to the small band gap of the CBP. Accordingly, we used 1,4-phenylenesis(triphenylsilane) (UGH2) with a large band gap, instead of CBP as the host material. As a result, it was possible to adjust the emission color by the host material. The luminous efficiency of the device with $Ir(F_2-ppy)_2$(pq) doped in UGH2 was about 11 cd/A at 0.06 cd/$m^2$.