• Title/Summary/Keyword: Ppy

Search Result 212, Processing Time 0.032 seconds

Synthesis and Electrical Properties of Polypyrrole Nanotubules (Polypyrrole Nanotubules의 합성과 전기적 특성)

  • 조영재;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.544-547
    • /
    • 2000
  • Polypyrrole (PPy) was chemically synthesized within the pores of nanoporous polycarbonate (PC) Particle Track-etched Membranes (nano-PTM). Hollow tubules are formed because polypyrrole initially deposits on the surface of the pores walls. By running successive syntheses, we have obtained wires (filled tubules). The redox property of PPy nanotubules was investigated by cyclic voltammetry. The redox potential was lowered as much as 0.5V vs. Ag/AgC1, comparing with electrosynthesized PPy film. It suggests that an electron hopping mechanism of PPy nanotubules was improved. Electric conductivity of PPy nanotubules and nanowire was evaluated. We obtained good electric conductivity of PPy nanotubules even in the neutral state. The conductivity and activation energy were $10^1$ order at the room temperature and 25.3 meV respectively.

  • PDF

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.

The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo;Kim, Ji-Hye;Chun, Yoon-Soo;Yoo, Young-Tai;Hong, Soon-Man
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1032-1038
    • /
    • 2009
  • A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.

Fabrication and Characterization of High Efficiency Green PhOLEDs with [TCTA-TAZ] : Ir(ppy)3 Double Emission Layers ([TCTA-TAZ] : Ir(ppy)3 이중 발광층을 갖는 고효율 녹색 인광소자의 제작과 특성 평가)

  • Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.199-203
    • /
    • 2008
  • High-efficiency phosphorescent organic light emitting diodes using TCTA-TAZ as a double host and $Ir(ppy)_3$ as a dopant were fabricated and their electro-luminescence properties were evaluated. The fabricated devices have the multi-layered organic structure of 2-TNATA/NPB/(TCTA-TAZ) : $Ir(ppy)_3$/BCP/SFC137 between an anode of ITO and a cathode of LiF/AL. In the device structure, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] were used as a hole injection layer and a hole transport layer, respectively. BCP [2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline] was introduced as a hole blocking layer and an electron transport layer, respectively. TCTA [4,4',4"-tris(N-carbazolyl)-triphenylamine] and TAZ [3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole] were sequentially deposited, forming a double host doped with $Ir(ppy)_3$ in the [TCTA-TAZ] : $Ir(ppy)_3$ region. Among devices with different thickness combinations of TCTA ($50\;{\AA}-200\;{\AA}$) and TAZ ($100\;{\AA}-250\;{\AA}$) within the confines of the total host thickness of $300\;{\AA}$ and an $Ir(ppy)_3$-doping concentration of 7%, the best electroluminescence characteristics were obtained in a device with $100\;{\AA}$-think TCTA and $200\;{\AA}$-thick TAZ. The $Ir(ppy)_3$ concentration in the doping range of 4%-10% in devices with an emissive layer of [TCTA ($100\;{\AA}$)-TAZ ($200\;{\AA}$)] : $Ir(ppy)_3$ gave rise to little difference in the luminance and current efficiency.

A Sensing of Glucose Solution and Diabetic Serum using Polypyrrole Nanotubules Enzyme Electrode Immobilized Glucose Oxidase (포도당 산화효소를 고정화한 Polypyrrole 나노튜뷸 효소전극의 포도당 용액 및 당뇨병 혈청에 대한 감응특성)

  • Kim, Hyun-Cheol;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.6-10
    • /
    • 2001
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer on the pore of a polycarbonate membrane. The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for electro-synthesized PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy nanotubules have improved in mass transport, or diffusion. That is because the diffusion occurs through a thin pore wall of PPy nanotubules. The kinetic parameter of PPy nanotubules enzyme electrode with glucose solution was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 23.8 mmol $dm^{-3}$ and $440\;{\mu}A$ respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film. What is more, the enzyme electrode is sensitive to blood sugar of a diabetic serum despite an obstruction of ascorbic acid, oxygen, some protein and/or hormone.

  • PDF

Preparation and Characterization of Polypyrrole Electroactive Actuators (Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성)

  • 박정태;최혁렬;김훈모;전재욱;남재도
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.826-832
    • /
    • 2001
  • In this study, PPy/gold/mylar type electroactive bi-layer actuator was prepared by the electrochemical polymerization of pyrrole onto the gold/mylar film and the actuation characteristics were studied using bending beam method. Conducting polymer-based actuators undergo volumetric changes due to the movement of dopant ions into the film during the electrical oxidation process. The bilayer films exhibited different actuation characteristics depending on dopant ion size. It was observed that the relatively small dopant ion (i.e. toluene sulfonate) moved into the PPy film at oxidized state, so volume expanded to result in bending motion. In case of the film having large dopant ion (i.e. dodecylbenzenesulfonate), volume expansion was observed at reduced state. This is due to the incorporation of $Na^+$ counterion with water molecules, while the large dopant ion was fixed in the film due to the limited mobility during tile redox process.

  • PDF

A Study on the Preparation of Polycarbonate/Polypyrrole Conducting Composite and Their Electrical Properties (Polycarbonate/Polypyrrole 전도성 복합체의 제조와 전기적 성질에 관한 연구)

  • Kim, Yong-Ju;Kim, Nam-In;Lee, Wan-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.923-928
    • /
    • 1999
  • Polycarbonate(PC)/polypyrrole(PPy) conducting composites were prepared by precipitation polymerization. $FeCl_3$, pyrrole and chloroform were used as oxidant, monomer, and solvent, respectively. The electrical conductivity was increased with increasing the amount of PPy, while the mechanical property was decreased. When the PPy content was 25 wt %, the electrical conductivity of the composites was increased up to 0.23 S/cm. The electrical conductivity, the stability of conductivity in air and mechanical properties of the composites of different PPy content were investigated and the morphology of the composite films was observed.

  • PDF

Preparation of Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission Layer (PVK:Ir(ppy)$_3$ 발광층을 가지는 고분자 발광다이오드의 제작)

  • Lee, Hak-Min;Gong, Su-Cheol;Choi, Jin-Eun;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.201-203
    • /
    • 2008
  • ITO 투명전극을 양극으로 사용하고 PEDOT:PSS 고분자 물질위에 PVK와 Ir(ppy)3를 각각 host와 dopant로 사용하여 고분자 발광다이오드를 제작하였다. 전자 수송층의 역할로 TPBI, 음극으로 Al을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)3/TPBI/LiF/Al 구조를 갖는 녹색 인광 고분자 유기발광소자(PhPLED)를 제작하였다. 제작 된 소자의 발광부 dopant인 Ir(ppy)3도핑 농도에 따른 전기적 광학적 특성을 평가하였다. PVK:Ir(ppy)3를 host와 dopant system으로 dopant Ir(ppy)3의 도핑 양을 0.5 wt%에서2.5 wt%까지 씩 변화시키면서 최적의 농도를 찾고자 하였다. TPBI를 전자 수송층으로 사용 하였을 경우 최대 휘도는 약 8600 cd/$m^2$ (at 8V)이고, 전류밀도는 337mA/$cm^2$ 를 나타내었다.

  • PDF

Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode (Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성)

  • Cho Seung-Koo;Park Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The Pt-Ru electrocatalyst was Prepared on Nafion membrane modified with Polypyrrole by chemical reduction of $H_2PtCI_6\;and\;RuCl_3$ solution ai precursor. From the electron dispersive microanalysis spectroscope(EDS), the Pt-Ru catalyst was located on the surface of Ppy/Nafion composite. The electrochemical oxidation of methanol on Pt-Ru catalyst deposited in Polypyrrole-impregnated Nafion was investigated by cyclic voltammetry (CV) and chronoamperometry. The onset potential of methanol oxidation was shifted to negative potential as the $RuCI_3$ concentration in deposition solution. Also, it was known that the Pt-Ru binary catalyst on Nafion could be directly deposited by using Polypyrrole and resulting Pt-Ru/PPy/Nafion was available for methanol oxidation.

A Study on the Preparation of NBR/Polypyrrole Conducting Composites and Their Electrical Properties (Poly(acrylonitrile-co-butadiene) Rubber/Polypyrrole 전도성 복합체의 제조와 전기적 성질에 관한 연구)

  • Jung, Mi-Ok;Huh, Yong-Il;Lee, Wan-Jin
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2000
  • The conducting composites were prepared by emulsion polymerization with poly (acrylonitrile-co-butadiene) (NBR) as a matrix and polypyrrole (PPY) as a conducting polymer. Among several surfactants, the electrical conductivity of the composite which was polymerized by dodecyl sodium sulfate (DSS) was the best. The film of composite was prepared by compression molding. The electrical conductivity was measured by 4 probes method as a function of PPY and temperature. When the content of PPY was 25 wt%, the electrical conductivity of composite was increased up to 1.17 S/cm. The percolation threshold showed at the vicinity of 15 wt% PPY content.

  • PDF