• Title/Summary/Keyword: Ppy

Search Result 212, Processing Time 0.017 seconds

Synthesis and Characterization of Iridium-Containing Green Phosphorescent Polymers for PLEDs

  • Xu, Fei;Kim, Hee Un;Mi, Dongbo;Lim, Jong Min;Hwang, Ju Hyun;Cho, Nam Sung;Lee, Jeong-Ik;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.399-405
    • /
    • 2013
  • Two series of new green phosphorescent polymers bearing a bis(2-phenyl-pyridine)iridium(III)(dibenzoylmethane) [$(ppy)_2Irdbm$] complex were designed and synthesized. Poly-carbazole (PCbz) derivative or polyfluorene with pendant carbazole groups (PFCbz) were employed as host polymers for the iridium complex. The iridium complex monomer was copolymerized with the host monomers using varying monomer ratios via a Yamamoto coupling reaction. Efficient energy transfer from host to dopant unit was observed by increasing the ratio of the iridium guest in the copolymers. Electroluminescent devices with the configuration ITO/PEDOT:PSS/polymer/BmPyPB/LiF/Al were fabricated and characterized. The phosphorescent polymers composed of the iridium complex guest and polyfluorene with carbazole pendants as a host performed better than the polymers composed of the same guest and the main chain polycarbazole host. A maximum external quantum efficiency of 0.73%, a luminous efficiency of 1.21 cd/A, and a maximum luminance of 372 $cd/m^2$ were obtained from a device fabricated using one of the synthesized copolymers.

Recent Progress in Conductive Polymer-based Membranes (전도성 고분자 분리막의 최근 연구동향)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.101-119
    • /
    • 2021
  • The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.