• Title/Summary/Keyword: Powertrain system

Search Result 167, Processing Time 0.024 seconds

Investigations on Improvement of Vehicle Design Feature on Idle Shake with Automatic Transmission (자동변속기 장착 차량의 아이들 셰이크 진동 성능 개선 대책에 대한 고찰)

  • Choi, Cheon;Suh, Myung-Won;Kim, Young-Gin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-120
    • /
    • 2000
  • In order to improve the vibration characteristics of mid sized passenger car automatic transmission at idle experimental and theoretical studies have been carried out. Idle shake in "D" range occurs by various reasons such as characteristics of body bending resonance between subsystems and engine mounts etc. Using full vehicle finite element analyses and modal tests we introduce the way to reduce the idle shake in the early design stage. It shows that the exciting forces are the 2nd order torque and force of engine. A powertrain system modes in "D" range are entirely effected by the additional boundary conditions of drive line. As a result the frequencies of subsystems are arranged to be lined up at the idle frequency range in order to avoid the resonances with subsystems To reduce the idle shake mounts of radiator are tuned to act as a dynamic damper to 1st bending frequency of the body. In addition a hydraulic mount which is optimized by Phase Shift Method is applied to the rear engine mount.e rear engine mount.

  • PDF

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

On the Development and Application of the Spherical CVT (구체무단변속기의 개발 및 응용)

  • Kim, Jung-Yun;Park, Yeong-Il;Park, F.C.;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.690-695
    • /
    • 2000
  • This article deals with the analytic results on the development and application of the Spherical CVT. The Spherical CVT is marked by its simple configuration, the infinite torque multiplication characteristic, and the smooth transitions between forward/neutral/reverse states of output speed. In this study, we describe the conceptual principles behind the Spherical CVT and some applications of it, which we developed recently. And, we propose the shifting algorithm based on the analytic consideration of CVT powertrain system. Contrary to conventional shifting algorithms using the OOL(optimal operating line) of the power source, the proposed shifting algorithm is represented as a $2^{nd}$ order equation in an explicit form, and it reveals the possibility of theoretic design of all optimal controller. As an example, we present numerical results that demonstrate the energy saving possible and the proposed shifting algorithm from the use of the Spherical CVT over standard reduction gear unit, using an ideal dc motor model.

  • PDF

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

Sizing of Powertrain in Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 동력전달계의 용량 선정)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • Jang, Seong-Uk;Ye, Hun;Kim, Cheol-Su;Kim, Hyeon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.