• 제목/요약/키워드: Powertrain

검색결과 283건 처리시간 0.033초

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • 장성욱;예훈;김철수;김현수
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가 (Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation)

  • 윤장우;김상범
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.

소형경유트럭의 하이브리드 튜닝 안전성에 관한 연구 (A Study on the Safety of Hybrid Tuning for Light-duty Diesel Trucks)

  • 전상우;권만재;안호순
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.20-25
    • /
    • 2021
  • This paper is the result of a research on hybrid tuning technology developed to improve the actual fuel efficiency and reduce emissions of in-use light-duty diesel trucks. In this study, a hybrid powertrain was constructed by inserting an electric motor between the diesel engine and manual transmission of an internal combustion engine vehicle and installing a battery. To verify the safety, a test was conducted based on the Korean tuning regulations. In particular, since there has been no case of tuning an internal combustion engine vehicle into a hybrid vehicle in Korea, it was necessary to carry out all procedures to receive tuning approval. The approval process consists of a technical review, safety verification test, and application for tuning approval. As a result, the test vehicle was approved for tuning because both the technical review and vehicle test results were suitable. Therefore, this study confirmed the safety of diesel hybrid tuning technology, and laid the foundation for the research and development of technologies to tune into an eco-friendly vehicle as well as the activation of related industries.

지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구 (Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift)

  • 김준영;유영준;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구 (Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test)

  • 김성수;이민호;노경하;김정환
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

차수 스펙트럼 변화를 통한 차실내부 음질 향상 (Sound Quality Improvement of Car Interior Noise Through the Change of Order Spectrum)

  • 신성환
    • 한국음향학회지
    • /
    • 제32권4호
    • /
    • pp.329-334
    • /
    • 2013
  • 자동차 엔진을 포함한 구동계 및 흡배기계 소음의 특징은 차수 스펙트럼(order spectrum) 분석으로 파악할 수 있다. 기존의 선행 연구에서는 엔진의 1차 및 2차 점화주파수(firing frequency)와 관련된 차수성분이 차실내부 소음에 주요한 영향을 미치는 것으로 알려져 있다. 본 연구에서는 차수스펙트럼의 변환에 따른 차실내부 소음의 음질(쾌적감) 차이를 파악하고자 한다. 이를 위하여 6실린더 및 4실린더 가솔린 엔진을 가진 승용차의 차실 내부 소음을 측정하고, 이 소음에 적응형 디지털 필터(adaptive digital filter)를 적용하여 차수레벨을 가감하는 방법으로 수정한다. 쌍비교법을 이용한 청음실험을 통하여 원음 및 편집음의 음질 정도를 평가하고, 음질 향상을 위한 차수스펙트럼 변화 방향을 제시한다. 결과적으로 반-차수(half-order) 성분의 차수레벨 감소가 차실내부 소음의 쾌적감 향상에 영향을 주는 반면, 점화차수 레벨의 감소가 항상 음질에 긍정적인 영향을 주는 것은 아님을 파악하였다.

HILS 기반 Series HEV 버스 주행 전략 개발에 대한 연구 (Study on the Development of Control Strategy for Series Hybrid Electric Bus based on HILS)

  • 정대봉;김민재;강형묵;민경덕;조용래;이춘범
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.83-91
    • /
    • 2012
  • In recent days, the study on hybridization of the heavy-duty is going on, actively. Especially, the improvement of fuel economy can be maximized in the intra-city bus because it drives the fixed route. For developing the hybrid electric intra-city bus, optimized control strategy which is possible to be applied with real vehicle is necessary. If the real-time control strategy is developed based on the HILS, it is possible to verify the real-time ability and fail-safety function which has the vehicle stay in safe state when the functional errors are occurred. In this study, the HILS system of series hybrid electric intra-city bus is developed to verify the real time control strategy and the fail-safety functions. The main objective of the paper is to build the HILS system for verifying the control strategy (rule-based control) which is implemented to reflect the Dynamic Programming results and fail-safety functions.

바나듐계 촉매상에서 암모니아를 이용한 질소산화물의 환원반응속도에 수분이 미치는 영향에 관한 연구 (Effect of Water on the Kinetics of Nitric Oxides Reduction by Ammonia over V-based Catalyst)

  • 김영득;정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.73-82
    • /
    • 2012
  • The main and side reactions of the three selective catalytic reduction (SCR) reactions with ammonia over a vanadium-based catalyst have been investigated using synthetic gas mixtures in the temperature range of $170{\sim}590^{\circ}C$. The three SCR reactions are standard SCR with pure NO, fast SCR with an equimolar mixture of NO and $NO_2$, and $NO_2$ SCR with pure $NO_2$. Vanadium based catalyst has no significant activity in NO oxidation to $NO_2$, while it has high activity for $NO_2$ decomposition at high temperatures. The selective catalytic oxidation of ammonia and the formation of nitrous oxide compete with the SCR reactions at the high temperatures. Water strongly inhibits the selective catalytic oxidation of ammonia and the formation of nitrous oxide, thus increasing the selectivity of the SCR reactions. However, the presence of water inhibits the SCR activity, most pronounced at low temperatures. In this study, the experimental results are analyzed by means of a dynamic one-dimensional isothermal heterogeneous plug-flow reactor (PFR) model according to the Eley-Rideal mechanism.