• Title/Summary/Keyword: Powertrain

Search Result 283, Processing Time 0.035 seconds

A Study on the Characteristics of Fuel Consumption and Emissions of Diesel Vehicles Using Engine Coolant Flow Rate On/Off Control (엔진 냉각수 유량 단속에 의한 디젤 차량의 연비 및 배기가스 특성 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2069-2074
    • /
    • 2013
  • The use of the electromagnetic clutch water pump for internal combustion engine vehicles saves fuel and leads to a reduction in emissions. The clutch water pump allows the engine cooling system to select the optimum operation condition by using coolant flow rate on/off control. This study investigated the characteristics of fuel consumption and emissions of the diesel engine cooling system using the clutch water pump. The electromagnetic clutch operation reduced by about 49% of engine warm up period at idle condition and controlled the optimum high coolant temperature at driving condition. Therefore, fuel consumption was enhanced by about 5%, and emissions such as HC, CO and $CO_2$ were also reduced to a certain degree even though NOx increased a little bit, compared to those of the conventional water pump under NEDC mode which represents the real driving pattern.

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Prediction of Thermal Fatigue Life of Engine Exhaust Manifold under Thermo-mechanical Cyclic Loading (열적-기계적 반복하중을 받고 있는 엔진 배기매니폴드의 열피로 수명예측)

  • Choi, Bok-Lok;Chang, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.911-917
    • /
    • 2010
  • In this study, we performed structural and fatigue analyses of the engine exhaust manifold that was subjected to thermo-mechanical cyclic loading. The methodologies used in this study are based on an approach in which the techniques for modeling the exhaust system, the temperature-dependent properties of the material, and thermal cyclic loading are taken into consideration and a reliable strategy is adopted for failure prediction. An application example shows that at an elevated temperature, considerable compressive plastic deformation is observed and that at a low temperature, tensile stresses remain in those parts of the test exhaust manifold where failure is observed. In order to predict fatigue life, mechanical damage is determined on the basis of the stress.strain hysteresis loops by using the classical Coffin.Manson equation and by adopting a method in which the dissipated plastic energy is taken into consideration.

Development of a Driver-Oriented Engine Control Unit (ECU)-Mapping System With BigData Analysis (빅데이터 분석을 통한 운전자 맞춤형 엔진 제어 장치 시스템의 개발)

  • Kim, Shik;Kim, Junghwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.247-258
    • /
    • 2017
  • Since 2016 when the regulations related to vehicle structure and device modification were drastically revised, the car tuning market has been growing rapidly. Particularly, many drivers are showing interest in changing the interior and exterior according to their preference, or improving the specifications of their cars by changing the engine and powertrain, among others. Also, as the initial engine settings such as horse power and torque of the vehicle are made for stable driving of the vehicle, it is possible to change the engine performance, via Engine Control Unit (ECU) mapping, to the driver's preference. However, traditionally, ECU mapping could be only performed by professional car engineers and the settings were also decided by them. Therefore, this study proposed a system that collects data related to the driver's driving habits for a certain period and sends them to a cloud server in order to analyze them and recommend ECU mapping values. The traditional mapping method only aimed to improve the car's performance and, therefore, if the changes were not compatible with the driver's driving habits, could cause problems such as incomplete combustion or low fuel efficiency. However, the proposed system allows drivers to set legally permitted ECU mapping based on analysis of their driving habits, and, therefore, different drivers can set it differently according to the vehicle specifications and driving habits. As a result, the system can optimize the car performance by improving output, fuel efficiency, etc. within the range that is legally permitted.

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

A study of driving simulation considering the various working modes of electric tractor (전기트랙터의 다양한 작업 환경을 고려한 주행 시뮬레이션에 대한 연구)

  • Yoo, Ilhoon;Kim, Byeongwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5357-5365
    • /
    • 2013
  • In this paper, we propose that a model based design for a electric tractor system by using ASM(Automotive Simulation Models). Before developing a realistic electric tractor, it is essential that defining the capacities of power sources and optimizing the parameters of electric tractor. In additionally, because the electric tractor must have not only driving function but also working function, two PMSM are used at electric tractor. ASM which is based on simulink and Carsim were used to design a electric system and powertrain of electric tractor. For verifying the electric tractor system, we compared the design parameters such as max power, state of charge, drive distance, velocity which were carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the simulation results. According to simulation of tractor, it is possible to arrange the advanced research of dynamical characteristic of tractor and present the guidelines for the electrical driving system.

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Effect of Slip-Controlled Torque Converter Damper Clutch in 5-Speed Automatic Transmission on Slip Rate and Fuel Economy (5속 A/T용 자동변속기 토크컨버터 댐퍼클러치 슬립제어가 슬림율과 연비에 미치는 영향)

  • Lee, Gee-Soo;Kim, Deok-Jung;Kim, Hyun-Chul;Na, Byung-Chul;Heo, Hyung-Seok;Lee, Ho-Gil;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.74-80
    • /
    • 2009
  • The objective of this paper was to investigate the slip rate and the slip frequency number of damper clutch of torque converter in 2.4L passenger vehicle with 5-speed A/T and analyze the effect of slip control and control strategy on driving characteristics and the fuel economy. The newly developed torque converter with the more durable wet friction material and the slip-controlled damper clutch system, the DCC system, was installed, which was easily compatible and amendable of the lock-up clutch of the base system. The vehicle has been tested on the fuel economy modes such as FTP-75, HWFET and NEDC (ECE15+EUDC) driving cycle at chassis dynamometer. The DCC mode (II), of which the control strategy had both the lock-up and the slip-controlled clutch, and the DCC mode (I) with full slip-controlled clutch were compared with the base system with only the lock-up clutch. As the research result, comparison to base system, the fuel consumption of the vehicle with the DCC control (II) was effectively improved by 6.6% and 7.7% on FTP-75 and NEDC mode.

System Response of Automotive PEMFC with Dynamic Modeling under Load Change (차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성)

  • Han, Jaeyoung;Kim, Sungsoo;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.