• 제목/요약/키워드: Powered activated carbon (PAC)

검색결과 6건 처리시간 0.019초

고농도 분말활성탄 결합 MBR 운전에 대한 활성탄 교체주기의 영향 (Effect of powder activated carbon replacement on HCPAC-MBR system operation)

  • 이채하;김진태;이정현;서규태;김인수
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to evaluate the effect of PAC(Powder Activated Carbon) retention time on stable operation of high concentration powered activated carbon(HCPAC-MBR) in the treatment of secondary domestic wastewater. The pilot scale HCPAC-MBR system was operated at two different SRTs, 25 days and 100 days. The main drawback of HCPAC-MBR system was the rapid increase of trans-membrane pressure. The increase rate of trans-membrane pressure was proportional to SRT value at constant flux. This result seemed to be caused by reduced amount of EPS adsorbed on the PAC in the reactor by decreasing the SRT of the PAC. The particle size of the PAC was also influenced by SRT. The PAC size was decreased as SRT was increased. The change of particle size could be one reason for the change of trans-membrane pressure. The pore volume in the cake-layer formed on the membrane surface became to be increased by reducing SRT, because the cake-layer was highly composed of the PAC. Therefore, increased pore volume might play a role to reduce the trans-membrane pressure. The removal rate of E260 and TOC was also inversely proportional to SRT value.

분말활성탄 흡착 및 탈기에 의한 이취미 제거 (Removal of Taste and Odor by Powdered Activated Carbon Adsorption and Air Stripping)

  • 전항배;나광주;서태경;박상민
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.455-460
    • /
    • 2008
  • Powered activated carbon(PAC) has been widely applied for controling odor causing compounds(OCCs) from water treatment plants. Because of their volatility, the OCCs can also be removed from water by air stripping methods. In this study, OCCs removal was tested with PAC adsorption, air stripping, and both PAC adsorption and air stripping from the Taecheong lake water. Removal efficiency of OCCs in terms of threshold odor number(TON) were 39.6% by both PAC (15mg/L) adsorption and aeration for 30 min, 33.6% by PAC(15mg/L) adsorption alone for 30 min, and 22.9% by aeration alone for 30 min, respectively. OCCs could be removed up to 50% by aeration for 120 min without PAC adsorption. At an extended aeration with 15mg/L of PAC, OCCs removal occurred mainly by PAC adsorption within 30 min aeration while it continued by air stripping afterward. At simulated jar tests with the raw water, removal efficiencies of geosmin and MIB were 48.3, 36.1% by coagulation and sedimentation without PAC addition. With 15mg/L of PAC on the same jar tests, the removal efficiencies were 83.1, 60.1%, respectively. Without PAC, OCCs could be possibly removed by stripping during the agitation processes.

활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리 (Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media)

  • 알탐그렐 아말사나;신원식;최정학;최상준
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

경제성을 고려한 새로운 PAC 선정방법의 적용 (Application of Newly PAC Selection Method Based on Economic Efficiency)

  • 김영일;배병욱
    • 대한환경공학회지
    • /
    • 제28권11호
    • /
    • pp.1141-1147
    • /
    • 2006
  • 경제성을 고려한 새로운 PAC 선정방법을 적용하고자 상수원수 내 MIB와 유기물 제거를 위한 PAC 흡착실험을 수행하였다. PAC 투입량이 증가함에 따라 MIB 제거율은 증가하는 경향을 보였으며, 석탄계 PAC가 목탄계 PAC에 비해 MIB 제거율이 우수한 것으로 나타났다. DOC 및 $UV_{254}$의 제거율은 PAC와 원수 종류에 따라 큰 차이를 보이지는 않았으나, MIB 제거율에 비해 떨어지는 결과를 보였다. MIB, DOC, 그리고 $UV_{254}$ 제거율은 실험에 사용한 PAC들 중에서 P-1000 PAC가 가장 좋았다. EEM 결과에 의하면 모든 시료에 존재하는 대부분의 유기물은 Fulvic산과 유사한 물질인 것으로 판명되었다. 특히, PAC 접촉 이후 대상 시료에 존재하는 유기물 중에서 Fulvic산과 유사한 유기물, Humic과 유사한 유기물, 그리고 SMP와 유사한 유기물 등이 줄어드는 경향을 보였다. 경제성을 고려한 PAC 선정방법에 의해 MCI 값이 가장 낮은 P-1000이 가장 적합한 PAC로 선정되었다. 최종적으로 선정하기에 앞서 PAC의 효율성 및 취급용이성, PAC의 입자크기 및 분포, 그리고 DOC 농도에 따른 PAC 투입비용 등도 고려해야 할 것으로 판단된다.

포괄고정화 PVA-gel의 물리적 특성 연구 (A study on the Preparation Methods of the Immobilized Encapsulation PVA-media for Wastewater Treatment)

  • 이은우;장인성;정선용;남병욱
    • 한국산학기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.116-121
    • /
    • 2005
  • 폐수 처리를 위한 PVA 포괄 고정화 담체의 특성에 관한 연구를 실시하였다. 특히 PVA의 고정화 조건에 따른 용해도의 영향, 첨가제가 PVA 물성에 미치는 영향, 제작된 PVA gel의 질산화 처리 효율을 살펴보았다. PVA gel 제작 과정 중 진공을 걸어줄수록 그리고 동결온도가 낮을수록 PVA gel의 용해도는 감소하였다. PAC와 같은 첨가제를 넣었을 때 PVA gel의 용해도는 감소하였고 특히 organoclay를 넣었을 때 PAC에 비하여 25% 낮은 용해도를 보였다. 질산화 효율면에서는 PVA로 코팅한 담체가 기존의 부착 담체에 비하여 용질과 산소 확산의 제한 때문에 질산화율이 낮게 관찰되었다.

  • PDF

Removal of haloacetonitrile by adsorption on thiol-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

  • Krueyai, Yaowalak;Punyapalakul, Patiparn;Wongrueng, Aunnop
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.342-346
    • /
    • 2015
  • Haloacetonitriles (HANs) are nitrogenous disinfection by-products (DBPs) that have been reported to have a higher toxicity than the other groups of DBPs. The adsorption process is mostly used to remove HANs in aqueous solutions. Functionalized composite materials tend to be effective adsorbents due to their hydrophobicity and specific adsorptive mechanism. In this study, the removal of dichloroacetonitrile (DCAN) from tap water by adsorption on thiol-functionalized mesoporous composites made from natural rubber (NR) and hexagonal mesoporous silica (HMS-SH) was investigated. Fourier-transform infrared spectroscopy (FTIR) results revealed that the thiol group of NR/HMS was covered with NR molecules. X-ray diffraction (XRD) analysis indicated an expansion of the hexagonal unit cell. Adsorption kinetic and isotherm models were used to determine the adsorption mechanisms and the experiments revealed that NR/HMS-SH had a higher DCAN adsorption capacity than powered activated carbon (PAC). NR/HMS-SH adsorption reached equilibrium after 12 hours and its adsorption kinetics fit well with a pseudo-second-order model. A linear model was found to fit well with the DCAN adsorption isotherm at a low concentration level.