• Title/Summary/Keyword: PowerFLOW

Search Result 6,126, Processing Time 0.037 seconds

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Performance Analysis of Ammonia-Fed Solid Oxide Fuel Cell Using Alternating Flow (교류 흐름 방식을 적용한 암모니아 공급 고체산화물 연료전지의 성능 분석)

  • QUACH, THAI-QUYEN;GIAP, VAN-TIEN;LEE, DONG KEUN;LEE, SUNYOUP;BAE, YONGGYUN;AHN, KOOK YOUNG;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.557-565
    • /
    • 2022
  • The effect of flow configuration in ammonia-fed solid oxide fuel cell are investigated by using a three-dimensional numerical model. Typical flow configurations including co-flow and counter-flow are considered. The ammonia is directly fed into the stack without any external reforming process, resulting in an internal decomposition of NH3 in the anode electrode of the stack. The result showed that temperature profile in the case of counter-flow is more uniform than the co-flow configuration. The counter-flow cell, the temperature is highest at the middle of the channel while in the case of co-flow, the temperature is continuously increased and reached maximum value at the outlet area. This leads to a higher averaged current density in counter-flow compared to that of co-flow, about 5%.

Estimation and Application of Turbulent Flow-Induced Input Power for Vibrational Power Flow Analysis (진동파워흐름해석을 위한 난류흐름에 의한 입력파워 추정 및 적용)

  • Lim, Gu-Sub;Hong, Suk-Yoon;Park, Young-Ho;Choi, Young-Dal;Joung, Tea-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.96-105
    • /
    • 2008
  • Turbulent flow-induced vibrations generate the structural fatigue and noise problems. In this paper, using Corcos, Smol' yakov-Tkachenko, Ffowcs Williams and Chase models, the input power generated by distributed fluid force is predicted for power flow analysis (PFA) of turbulent flow-induced vibration. Additionally, the Fast Fourier Transform (FFT) is used to raise the calculation efficiency PFA results obtained are compared with the classical modal solutions for verifications. Analytic results using the fluid models show good agreements with those of modal analysis, respectively.

  • PDF

A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT) (횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

INSTANTANEOUS COMPENSATING POWER FLOW DIAGRAM OF ACTIVE POWER FILTER

  • Jung, Y.G.;Ha, F.rashima;Lim, Y.C.;Yang, S.H.;Chang, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.883-887
    • /
    • 1998
  • The goal of this paper is to present an instantaneous compensating power flow of active power filter(APF) by graphical method that could be practicable to compensate the power in both case of behaving in an instantaneous rectifying mode and an instantaneous inverting mode. To ensure the validity of the proposed method, computer simulation is achieved. Proposed method can be present more exquisite and physically meaningful power flow than conventional method in the instantaneous compensating power flow diagram of APF.

  • PDF

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

A Method to Calculate Charge for Reactive Power Service under Competition of Electric Power Utilities

  • Ro, Kyoung-Soo;Park, Sung-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.39-44
    • /
    • 2001
  • As electric power systems have been moving from vertically integrated utilities to a deregulated environment, the charging of reactive power management is a new challenging them for market operators. This paper proposes a new methodology to compute the costs of providing reactive power management service in a competitive electrical power market. The proposed formulation, which is basically different from those shown in the literature, consists of two parts. One is to recover investment capital costs of reactive power supporting equipment based on a reactive power flow tracing algorithm. The other is to recover operational costs based on variable spot prices using the optimal power flow algorithm. The charging shapes resulted from the proposed approach exhibit a quite good meaning viewed from a practical sense. It turns out that reactive power charged are mostly due to recovery of capital costs and slightly due to recovery of operational costs. The methods can be useful in providing additional insight into power system operation and can be used to determined tariffs of a reactive power management service.

  • PDF

A New Concept of Power Flow Analysis

  • Kim, Hyung-Chul;Samann, Nader;Shin, Dong-Geun;Ko, Byeong-Hun;Jang, Gil-Soo;Cha, Jun-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.312-319
    • /
    • 2007
  • The solution of the power flow is one of the most important problems in electrical power systems. These traditional methods such as Gauss-Seidel method and Newton-Raphson (NR) method have had drawbacks up to now such as initial values, abnormal operating solutions and divergences in heavy loads. In order to overcome theses problems, the power flow solution incorporating genetic algorithm (GA) is introduced in this paper. General operator of genetic algorithm, arithmetic crossover, and non-uniform mutation operator of GA are suggested to solve the power flow problem. While abnormal solution cannot be obtained by a NR method, multiple power flow solution can be obtained by a GA method. With a heavy load, both normal solution and abnormal solution can be obtained by a proposed method. In this paper, a floating number representation instead of the binary number representation is introduced for accuracy. Simulation results have been compared with traditional methods.