• Title/Summary/Keyword: Power-aware

Search Result 321, Processing Time 0.03 seconds

An Efficient DVS Algorithm for Pinwheel Task Schedules

  • Chen, Da-Ren;Chen, You-Shyang
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.613-626
    • /
    • 2011
  • In this paper, we focus on the pinwheel task model with a variable voltage processor with d discrete voltage/speed levels. We propose an intra-task DVS algorithm, which constructs a minimum energy schedule for k tasks in O(d+k log k) time We also give an inter-task DVS algorithm with O(d+n log n) time, where n denotes the number of jobs. Previous approaches solve this problem by generating a canonical schedule beforehand and adjusting the tasks' speed in O(dn log n) or O($n^3$) time. However, the length of a canonical schedule depends on the hyper period of those task periods and is of exponential length in general. In our approach, the tasks with arbitrary periods are first transformed into harmonic periods and then profile their key features. Afterward, an optimal discrete voltage schedule can be computed directly from those features.

Delay and Energy Efficient Data Aggregation in Wireless Sensor Networks

  • Le, Huu Nghia;Choe, Junseong;Shon, Minhan;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.607-608
    • /
    • 2012
  • Data aggregation is a fundamental problem in wireless sensor networks which attracts great attention in recent years. Delay and energy efficiencies are two crucial issues of designing a data aggregation scheme. In this paper, we propose a distributed, energy efficient algorithm for collecting data from all sensor nodes with the minimum latency called Delay-aware Power-efficient Data Aggregation algorithm (DPDA). The DPDA algorithm minimizes the latency in data collection process by building a time efficient data aggregation network structure. It also saves sensor energy by decreasing node transmission distances. Energy is also well-balanced between sensors to achieve acceptable network lifetime. From intensive experiments, the DPDA scheme could significantly decrease the data collection latency and obtain reasonable network lifetime compared with other approaches.

Power-aware Location based Routing in Ad-hoc Network (Ad-hoc 네트워크에서의 에너지를 고려하는 위치기반 라우팅)

  • Yoo, Seung-Hwan;Kim, Sung-Chun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.467-468
    • /
    • 2009
  • 무선 애드혹 네트워크는 고정된 유선 네트워크에서 생각할 수 없었던 잦은 네트워크 구성의 변화, 대역폭과 에너지 사용의 제한 등 기존의 유선 네트워크와는 다른 특성들을 갖는다. 따라서 유선 네트워크에서 제공받았던 고품질의 서비스를 무선 애드혹 네트워크에서 제공받기 위해서는 제한된 자원을 효과적으로 이용할 수 있는 연구가 필요하다. 본 논문에서는 GPS 등의 기술을 이용하여 네트워크를 구성하는 이동 노드들의 위치 정보를 파악하고, 이를 라우팅에 활용하는 기존의 위치기반 라우팅 기법 중 하나인 LAR 알고리즘을 개량하였다. 제안 알고리즘은 노드들의 위치뿐만 아니라 에너지까지 함께 고려하며, 이를 위해 불필요한 제어 메시지의 확산을 최소화하고, 노드간 거리에 적절한 전송 전력을 사용하여 통신을 하게 함으로써 효율적인 라우팅이 이루어지도록 하였다. 실험 결과 기존 LAR 알고리즘에 비해 제안 기법이 노드의 생존률이 평균 12.1% 향상되었다.

A Study on Power-aware Application Mapping for CGRA (CGRA를 위한 전력이 고려된 어플리케이션 매핑에 관한 연구)

  • Yoon, Jonghee W.;Kim, Yongjoo;Park, Sanghyun;Cho, Doosan;Lee, Jongwon;Kim, Kyungwon;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.875-876
    • /
    • 2009
  • 최근에 응용프로그램의 복잡도가 증가함에 따라 이를 빠르게 처리하기 위하여 각종 멀티미디어 SoC에서 Coarse Grained Reconfigurable Architecture (CGRA)들이 사용되고 있다. CGRA가 제공하는 병렬성을 극대화하기 위한 많은 어플리케이션 매핑 알고리즘이 연구되어 왔으나 CGRA에서 소모되는 전력을 줄이기 위한 노력은 거의 없는 상태이다. 이러한 문제를 극복하기 위해 본 논문에서는 기존의 매핑 알고리즘을 기반으로 누설전력을 줄이기 위한 방법에 대해 다루고자 한다.

E-resources usage among Polytechnic students in Southwest Nigeria: evidence from Federal Polytechnic, Ede and The Polytechnic, Ibadan Nigeria

  • Alasa, Sekinat Abiodun;Quadri, Ganiyu Oluwaseyi
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.12 no.1
    • /
    • pp.49-65
    • /
    • 2022
  • This study examined e-resources usage among polytechnic students in Southwest Nigeria. A descriptive research design was adopted for this study and the population consisted of polytechnic students from The Polytechnic, Ibadan and Federal Polytechnic, Ede. There were 9671 students from both polytechnics. A multi-stage sampling technique was employed with a sample fraction of 5% was drawn from the total number of students in each faculty amounting to 381. A structured questionnaire was the major instrument used for data collection and the questionnaire was pre-tested using Cronbach-alpha to determine the reliability co-efficient. Data obtained was analyzed using SPSS. The study found that the students from both polytechnics are aware of the e-resources and that the e-resources were mainly used for research, class assignment and to update knowledge. The problem such as epileptic power supply, poor internet connection and so on was identified. The study concluded that polytechnic students could benefit immensely from the enormous usage of e-resources particularly for teaching, learning and research. Based on the findings, recommendations were made.

Benefits and Risks of Whole Body Vibration Based Acceleration Training (전신 진동기반 중력가속 운동의 효과와 위험성)

  • Lee, Woon-Yong
    • Journal of Wellness
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • The benefits and risks of whole body vibration (WBV) based acceleration training on the human body have been documented for many years. WBV training has been shown to increase muscular strength, explosive power, bone strength, performance, mobility, cardiovascular function, circulation and anabolic hormone level and so on. The purpose of this review is correct understanding and application of WBV training. Without proper understanding, rather, to apply WBV to the human body can be fatal harm, and therefore know that what is vibration and has advantages and disadvantages. If there is anything positive side there is bound to the negative aspects. In this regard, WBV training can have a positive impact on the already confirmed by several studies and also, there have been scientifically proven. But still we are part of a scientific approach that is acceptable even to keep in mind that you will always coexist. Once again, the effect of WBV with a physical stimulus that risk and should be remembered. In addition, given the momentum and how to exercise and well-being well aware that vibration exercise as a way to think of how not to be familiar with.

A Strategy of the Link Saving Routing and Its Characteristics for QoS Aware Energy Saving(QAES) in IP Networks (IP Network에서 QoS Aware Energy Saving(QAES)을 위한 링크 절약 라우팅의 한 방법 및 특성)

  • Han, Chimoon;Kim, Sangchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.76-87
    • /
    • 2014
  • Today the energy consumption of ICT networks is about 10% of the worldwide power consumption and is predicted to increase remarkably in the near future. For this reason, this paper studies energy saving strategies assuring the network-level QoS. In the strategies, the energy consumption of NIC(network interface card) on both endpoint of links decreases by selecting links and making them sleep when the total traffic volume of the IP network is lower than a threshold. In this paper, we propose a heuristic routing algorithm based on so-called delegating/delegated routers, and evaluate its characteristics using computer simulation considering network-level QoS. The selection of sleep links is determined in terms of the number of traffic paths (called min_used path) or the amount of traffics(called min_used traffic) through those kinks. To our experiment, the min_used traffic method shows a little better energy saving but the increased path length compared to the min_used path method. Those two methods have better energy saving characteristics than the random method. This paper confirms that the delegating/delegated router-based routing algorithm results in energy saving effects and sustains network-level QoS in IP networks.

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

Performance Analysis of Location-Aware System based on Active Tags (능동태그 기반 위치인식 시스템의 성능 분석)

  • So, Sun-Sup;Eun, Seong-Bae;Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.422-429
    • /
    • 2007
  • Location awareness is one of the key functionalities to build an U-city. Recently, many of works of the location-aware systems are emerging to commercially apply to on-going large-scale apartment complex based on U-city. As dwellers or cars being attached with active tags are moving in the U-city complex, the active tags periodically broadcast their own identifiers and receivers fixed along the street or in building use those information to calculate location of them. There are several issues to be considered for such an environment. The first is that the number of active tags operating in the same region are large as much as tens of thousands, and the second is that the active tags should be alive without change of batteries more than a year, hence low power consumption is very important. In this paper we propose i) a new architecture for location-aware system considering such issues, ii) technical issues to implement it using active tags, and iii) a mathematical analytic model to investigate overall performance and verify it by comparing with actual experimental results. Through the analysis we can show the theoretical boundary of the lowest packet loss rate and the maximum number of tags with acceptable performance for the systems based on active tags. The results can be applied to practical design of location-based systems of U-City projects.

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.