• Title/Summary/Keyword: Power-Law Fluid

Search Result 119, Processing Time 0.026 seconds

Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle (유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성)

  • Kim, Kyoung-Hoon;Jung, Young-Guan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.

Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube (경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위)

  • Moh, Jeong Hah;Cho, Y.I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady.

A Study on Brake Gain Adaptive Wheel Slip Control (브레이크 게인 적응 휠 슬립 제어에 관한 연구)

  • Jo, J.S.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF

Finite Element Analysis of Rubber Extrusion Forming Process (고무 압출성형 공정에 대한 유한요소 해석)

  • Ha, Yeon-Sik;Cho, Jin-Rae;Kim, Tae-Ho;Kim, Jun-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.762-767
    • /
    • 2007
  • As a macromolecule material, melted rubber flow shows characteristics of shear thinning fluid. The dynamic viscosity of this rubber fluid is influenced by temperature and shear strain rate. In this study, the numerical simulation of rubber extrusion forming process has been performed using commercial CFD code, Polyflow. Power-law model considering the effect of shear rate is used for the computer simulation of this non-Newyonian flow. Also Non-isothermal behavior is considered as Arrhenius-law model. Distributions of velocity and temperature are predicted through the simulation.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Modeling on Rheological Behavior of Cement Paste under Squeeze Flow (압축 유동하에 있는 시멘트 페이스트의 유변학적 거동에 관한 모델링)

  • Min, Byeong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.405-413
    • /
    • 2020
  • The normal stress of cement paste measured under squeeze flow is divided into an elastic solid region at strains between 0.0003 and 0.003 and a strain-hardening region at strains of 0.003 and 0.8. A modeling equation at the strain-hardening region was proposed. First, from the viewpoint of fluid behavior, the power-law non-Newtonian fluid model, with a power-law consistency (m) of 700 and a power index (n) of 0.2, was applied. The results showed good agreement with the experimental results except for an elastic solid region. Second, from the viewpoint of ductile yielding solid behavior, the force balance model was applied, and the friction coefficient between the sensor part measuring the load and the surface of the cement paste was derived as a polynomial of the normal strain by applying the half-interval search method to the experimental data. The results showed good agreement with the experimental results only in the middle normal strain region at strains between 0.003 and 0.3. The rheological behavior of the cement paste under squeeze flow was more consistent with the experimental results from the viewpoint of power-law non-Newtonian fluid behavior than from the viewpoint of ductile yielding solid behavior in the strain-hardening region.

Free Surface Vortex in a Rotating Barrel with Rods of Different Heights

  • Zhang, Xiaoyue;Zhang, Min;Chen, Wanyu;Yang, Fan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • A bathtub vortex above the outlet of a rotating barrel is simulated. By analyzing the Ekman layer theory, it can be found that the main flow circulation is inversely proportional to the thickness of Ekman layer. The thicker the Ekman boundary layer, the weaker the rotational strength and the shorter of the length of gas core is. According to this law, models of barriers with rods of different heights are established. The reduction of air-core length in this air entrainment vortex and weakening the strength of rotation field were achieved.

Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil (엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.