• 제목/요약/키워드: Power-Law Distribution

검색결과 480건 처리시간 0.023초

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

산업용 청소기 모터의 가속수명시험 (Accelerated Life Test of Industrial Cleaner Motor)

  • 엄학용;이기천;장무성;박종원;이용범
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.

Globalization of Korean Electrical Installations Standards and Codes Based on Comparison of IEC 60364 with NFPA 70(NEC)

  • Ki, Chung-Young;Ro, Kwak-Hee;Seop, Shin-Hyo;Joo, Nam-Taik
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2002년도 추계학술대회논문집
    • /
    • pp.280-287
    • /
    • 2002
  • Most Technological laws of Korea are almost identical to those of Japan. Electricity was not introduced to Korea until lighting ceremony in Kyong-Bok palace observed in 1887. Since Korea was annexed to Japan in 1910, Korea have applied Japanese law and regulations made by Chosun government-general. And public works were under Japan control. Korea accepted adopted the power plants of America, codes of NESC, ASME / ANSI, MEMA while Japan accepted or adopted only IEC. Our generation distribution system takes American style while our consumer side takes Japanese style. As global trade system was transferred GATT into WTO, the technological standards, certification, construction and testing are in harmony internationally. The WTO / TBT agreement came in effect after 12th, April, 1979. The sections in the agreement require the members to exchange their own standards and codes for the harmonized ones by degree. The Korean distribution system has a strong resemblance to American system so that the internal engineers are confused in application of the relevant standards. IEC60364 and NEC are technologically similar but practically unconvertible because both have their different originality, that is to say Europe and USA. This paper deals with the fundamental elements of electrical safety system on review of IEC 60364 and NEC. This paper considers how engineers should apply IEC60364 and NFPA 70(NEC) based on all-the-way review of them.

  • PDF

광고를 통해 본 일제강점기 치과 장비 및 기구 광고에 관한 연구 (The study on advertisement of dental devices & instrument during Japanese colonized period)

  • 신재의
    • 대한치과의사협회지
    • /
    • 제48권12호
    • /
    • pp.893-918
    • /
    • 2010
  • This article is purposed of reviewing the development history of Japanese dental devices and instrument, and their related advertisement activities during the Japanese colonized period in Korea in early 20th century. Japanese dental devices and instrument were redesigned to accommodate their ergonomic shape above the simple imitation, and it implies the excessive desires brought them frustrations. The tragic earthquake on Sep. l, 1923, medical insurance law enforcement on Jan. 1, 1927, celebration of "Cavity prevention Day" started on Jun. 4, 1928, and the attack of Manchuria and China by Japan after 1931, all of these historical incidents become the preliminary requirement for the development of dental devices. On Nov. 1, 1937, Japanese government started to control dental materials, driving the campaigns for excluding foreign products and encourging the use of local products. In 1939, Nakajima dental manufacturers used this political and social atmosphere on their advertisement as saying "Our Nakajima's products have no compromise with the short raw materials, but only commitment to our quality". Since after 1940, the price and supply have been strongly under control, and the control group was appeared to manage all of supply and distribution of raw materials, regular price system, and specifications. At last, the Japanese national power were devastated in its production and distribution capacities, and get to the frustrated period. The main advertised dental devices and instruments in Korea during the Japanese colonized period were 1) dental chair, unit and cabinet, 2) dental x-ray, 3) compressors, 4) dental needles, 5) small instrument and carryon medical(emergency) kit, 6) oral hygiene and pyorrhea alveolaris, infrared rays, sunlight lamp, ultrashort wave treatment devices, 7)crown former, electric furnace, casting machine, articulator, electric lathe, and laboratory equipments, etc.

용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I) (A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I))

  • 최용식;김영진;우흥식
    • 한국안전학회지
    • /
    • 제5권1호
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

국내 보건학 분야 학술활동의 군집화와 '두 문화' 현상 - 보건행정학회지(1991~2006) 게재논문의 공저자 네트워크 분석 - (Co-author.Keyword Network and its Two Culture Appearance in Health Policy Fields in Korea: Analysis of articles in the Korean Journal of Health Policy and Administration, 1991~2006)

  • 정민수;정동준
    • 보건행정학회지
    • /
    • 제18권2호
    • /
    • pp.86-106
    • /
    • 2008
  • This research analyzed. knowledge structure and its effect factor by analysis of co-author and keyword network in Korea's health policy and administration sector. The data was extracted from 339 articles listed in the Korean Journal of Health Policy and Administration, and was transformed into a co-author and keyword matrix. In this matrix the existence of a link was defined by impact factors which were calculated by the weight value of what the role was and the rate of how many authors contributed. We demonstrated that the research achievement was dependent on the author's status and network index. Analysis methods were neighborhood degree, correspondence analysis, multiple regression and the difference of weight distribution by research fields. Co-author networks were developed as closeness centrality as well as degree centrality by a few high productivity researchers. In particular, power law distribution was discovered in impact factor and research productivity. The effect of the author's role was significant in both the impact factor calculated by the participatory rate and the number of listed articles. Especially, this journal shared its major researchers who had a licensed physician with the Journal of Preventive Medicine and Public Health. Therefore, social scientists were likely to be small co-author network differently from natural scientists. It was so called 'two cultures' phenomenon. This study showed how can we verified academic research structure existed in the unit of journal like as citation networks. The co-author networks in the field of health policy and administration had more differentiated and clustered than preventive medicine and epidemiology fields.

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.