• Title/Summary/Keyword: Power-Factor

Search Result 6,144, Processing Time 0.034 seconds

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (발전비용의 부하역률 감도를 이용한 효율적인 역률 개선 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.196-198
    • /
    • 2003
  • The low load power factor causes various problems such as the increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and its effects in supplying the reactive power and enhancing the load power factor are analyzed in a small-scale power system. The load power factor sensitivity of the generation cost is applied for determining the locations and capacities of reactive power compensation devices. It is shown that the generation cost can be reduced and the system power factor can be enhanced effectively using the load power factor sensitivity.

  • PDF

A Study on Enhancing the Load Power Factor from the Point of View of Economic Operation Using the Load Power Factor Sensitivity Method (부하역률 감도기법 적용에 의한 전력시스템의 경제운용 측면에서의 역률개선 방안 연구)

  • Lee B. H.;Kim J. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.153-155
    • /
    • 2004
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the integrated costs are used for determining the value of the load power factor from the point of view of the economic operation. It is shown through the application to a large-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost and Integrated Costs (발전비용의 부하역률 감도와 종합비용을 활용한 효과적인 역률개선 방안 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.284-286
    • /
    • 2003
  • The low load power factor causes various problems such as the Increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost and integrated costs are used for determining the locations and capacities of reactive power compensation devices effectively and for enhancing the load power factor appropriately. It is shown through the application to a small-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

A Study on a Methodology of Determining an Appropriate Load Power Factor Effectively by the Use of Reactive Power Sensitivity and Load Duration Curve (무효전력 민감도와 부하지속곡선을 활용한 적정 부하역률의 효과적인 산정 기법에 관한 연구)

  • Lee, Byung Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1782-1790
    • /
    • 2012
  • In this paper, a methodology to use load duration curve and the reactive power factor sensitivity of generation cost is proposed for analyzing the effects of load power factor effectively. A great deal of cases of power systems are classified into several patterns according to the characteristics using load duration curve, and the overall effects of load power factor are assessed by integrating the analysis results of load power factor in all the patterns. The reactive power sensitivity of generation cost and the integrated costs such as generation cost, investment cost, voltage variation penalty cost and CO2 emission cost are used for determining an appropriate load power factor. A systematic procedure for effective analysis of load power factor is presented. It is shown through the application to the practical power system of KEPCO(Korea Electric Power Corporation)that the effects of load power factor can be analyzed effectively using load duration curve and reactive power factor sensitivity.

A Characteristic Study on the Power Factor Compensation Application of High Voltage Induction Motor (고압 유도전동기 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Reactive power doesn't contribute to work but needs to sustain the electromagnetic field required for the induction motor to operate. Starting power factor of induction motor is specially lower than running power factor. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is occasionally being hit by the effects of the starting reactor connection position at the starting, stopping of high-voltage induction motor. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

Source Side Power Factor Correction for Utility Interactive Photovoltaic System (계통연계형 태양광 발전 시스템에서의 전원측 역율 개선)

  • 조영준;김홍성;목형수;최규하;김한성
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.386-392
    • /
    • 1997
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reserve margin in summer. As one of the remedies about this problem, the small scale utility interactive photovoltaic system(UIPVS) is considered for auxiliary power source. For this system one of problems to be solved technically, system operating power factor. Generally in case of small scale system, system is operated in unity power factor. But this unity power factor operating mode decrease power factor viewed from utility because UIPVS supply active power to utility. Therefore this paper propose UIPVS with power factor correcting function and this system is analyzed.

  • PDF

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System (물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.