• Title/Summary/Keyword: Power-Efficient Routing Protocol

Search Result 94, Processing Time 0.024 seconds

A Cluster-based Power-Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kweon, Ki-Suk;Lee, Seung-Hak;Yun, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.76-90
    • /
    • 2006
  • Sensor network consists of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The life time of each node in the sensor network significantly affects the life time of whole sensor network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all sensor nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Cluster-Based Power-Efficient Routing (CBPER) Protocol which provides scalable and efficient data delivery to multiple mobile sinks. Previous r(luting protocols, such as Directed Diffusion and TTDD, need to flood many control packets to support multiple mobile sinks and many sources, causing nodes to consume their battery. In CBPER, we use the fact that sensor nodes are stationary and location-aware to construct and maintain the permanent grid structure, which makes nodes live longer by reducing the number of the flooding control packets. We have evaluated CBPER performance with TTDD. Our results show that CBPER is more power-efficient routing protocol than TTDD.

Power and Location Information based Routing Protocol Design in Wireless Sensor Networks (무선 센서 네트워크에서 전력과 위치정보 기반 라우팅 프로토콜 디자인)

  • Son Byung-Rak;Kim Jung-Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.48-62
    • /
    • 2006
  • In recent years, wireless sensor networks(WSNs) have emerged as a new fast-growing application domain for wireless distributed computing and embedded systems. Recent Progress in computer and communication technology has made it possible to organize wireless sensor networks composed tiny sensor nodes. Furthermore, ad-hoc network protocols do not consider the characteristics of wireless sensor nodes, making existing ad-hoc network protocols unsuitable for the wireless sensor networks. First, we propose power-aware routing protocols based on energy-centered routing metrics. Second, we describe power management techniques for wireless sensor nodes using the spatial locality of sensed data. Many nodes can go into a power-down mode without sacrificing the accuracy of sensed data. Finally, combining the proposed techniques, we describe an overall energy-efficient protocol for data collection. Experimental results show that the proposed routing protocol can extend the routing path lifetime more than twice. The average energy consumption per sensing period is reduced by up to 30%.

  • PDF

DEESR: Dynamic Energy Efficient and Secure Routing Protocol for Wireless Sensor Networks in Urban Environments

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Gupta, Deepank;Gupta, Nidhi;Asthana, Anupriya
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.269-294
    • /
    • 2010
  • The interconnection of mobile devices in urban environments can open up a lot of vistas for collaboration and content-based services. This will require setting up of a network in an urban environment which not only provides the necessary services to the user but also ensures that the network is secure and energy efficient. In this paper, we propose a secure, energy efficient dynamic routing protocol for heterogeneous wireless sensor networks in urban environments. A decision is made by every node based on various parameters like longevity, distance, battery power which measure the node and link quality to decide the next hop in the route. This ensures that the total load is distributed evenly while conserving the energy of battery-constrained nodes. The protocol also maintains a trusted population for each node through Dynamic Trust Factor (DTF) which ensures secure communication in the environment by gradually isolating the malicious nodes. The results obtained show that the proposed protocol when compared with another energy efficient protocol (MMBCR) and a widely accepted protocol (DSR) gives far better results in terms of energy efficiency. Similarly, it also outdoes a secure protocol (QDV) when it comes to detecting malicious nodes in the network.

Energy Efficient Routing Protocol in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율적인 라우팅 프로토콜)

  • 손병락;김중규
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 2004
  • By the progress of communication and hardware technology, It is possible to organize wireless sensor nodes using the tiny sensor in recently. It is a critical aspect to minimize energy consumption for long-term lively sensor because wireless sensor nodes are associated with the available resources. The wireless sensor network is restricted in communication, exhaustion of power, and computation but it is very similar an Ad-Hoc network. Each sensor node products a few data and application layer of each sensor has slow transmitting feature. Unlike Ad-hoc, which is usually source or sink, base station of the each senor nodes works as sink and the other nodes except sink node works as source. Generally, wireless sensor network keep staying fixed state and observing circumstances continuously after setting up. It doesnt fit for the wireless sensor networks under functioning of existing ad-hoc networks because original Ad-Hoc network routing protocol couldnt operate for wireless sensor network features. This thesis propose the effective routing protocol way in the filed of the expanded routing protocol based on tree with considering on the characteristic of wireless sensor networks pattern.

  • PDF

A Short Path Data Routing Protocol for Wireless Sensor Network (단거리 데이터 전달 무선 센서네트워크 라우팅 기법)

  • Ahn, Kwang-Seon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.395-402
    • /
    • 2007
  • Wireless sensor networks have many sensor nodes which response sudden events in a sensor fields. Some efficient routing protocol is required in a sensor networks with mobile sink node. A data-path template is offered for the data announcement and data request from source node and sink node respectively. Sensed data are transferred from source node to sink node using short-distance calculation. Typical protocols for the wireless networks with mobile sink are TTDD(Two-Tier Data Dissemination) and CBPER(Cluster-Based Power-Efficient Routing). The porposed SPDR(Short-Path Data Routing) protocol in this paper shows more improved energy efficiencies from the result of simulations than the typical protocols.

Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET (MANET에서 배터리 잔량과 신호세기를 동시에 고려한 Power-aware 라우팅 프로토콜)

  • Park Gun-Woo;Choi Jong-Oh;Kim Hyoung-Jin;Song Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.219-226
    • /
    • 2006
  • The shortest path is only maintained during short time because network topology changes very frequently and each mobile nodes communicate each other by depending on battery in MANET(Mobile Ad-hoc Network). So many researches that are to overcome a limitation or consider a power have executed actively by many researcher. But these protocols are considered only one side of link stability or power consumption so we can make high of stability but power consumption isn't efficient. And also we can reduce power consumption of network but the protocol can't make power consumption of balancing. For that reason we suggest RBSSPR(Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET). The RBSSPR considers residual capacity of battery and signal strength so it keeps not only a load balancing but also minimizing of power consumption. The RBSSPR is based on AODV(Ad-hoc On-demand Distance Vector Routing). We use ns-2 for simulation. This simulation result shows that RBSSPR can extense lifetime of network through distribution of traffic that is centralized into special node and reducing of power consumption.

An Energy-efficient Power-aware Routing Protocol based on Load-balancing for Ad hoc Networks (Ad hoc 네트워크 환경에서 부하 균등 기반의 power-aware 라우팅 프로토콜)

  • Kim Dong-hyun;Ha Rhan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.379-381
    • /
    • 2005
  • Ad hoc 네트워크에서 노드의 한정된 에너지 용량은 개설 경로의 수명과 안정성에 많은 영향을 미치는 요소이다. 따라서 이러한 에너지 한계를 극복하기 위한 다양한 power-aware 라우팅 프로토콜들이 네트워크 계층에서 제안되고 있으며, 이들 라우팅 프로토콜들은 기본적으로 노드의 배터리 잔량 에너지와 전송 전력량을 경로 탐색 과정에서 반영한다. 본 논문에서는 기존의 power-aware 라우팅 프로토콜보다 개설 경로의 동작시간을 높이고 전체 네트워크의 부하균등을 이를 수 있도록 하는 새로운 라우팅 프로토콜을 제안하며 TPR(Traffic load based power-aware routing protocol)로 명명한다. TPR은 NS-2를 이용한 성능 평가를 통해 전체 네트워크의 부하 균등과 개설 경로의 수면, 안정성 측면에서의 개선점을 확인한다.

  • PDF

The Routing Algorithm for Wireless Sensor Networks with Random Mobile Nodes

  • Yun, Dai Yeol;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2017
  • Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or base-station where the data can be observed and analyzed. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, communication bandwidth and limited-battery power. At present time, most of the research on WSNs has concentrated on the design of energy- and computationally efficient algorithms and protocols In order to extend the network life-time, in this paper we are looking into a routing protocol, especially LEACH and LEACH-related protocol. LEACH protocol is a representative routing protocol and improves overall network energy efficiency by allowing all nodes to be selected to the cluster head evenly once in a periodic manner. In LEACH, in case of movement of sensor nodes, there is a problem that the data transmission success rate decreases. In order to overcome LEACH's nodes movements, LEACH-Mobile protocol had proposed. But energy consumption increased because it consumes more energy to recognize which nodes moves and re-transfer data. In this paper we propose the new routing protocol considering nodes' mobility. In order to simulate the proposed protocol, we make a scenario, nodes' movements randomly and compared with the LEACH-Mobile protocol.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

CREEC: Chain Routing with Even Energy Consumption

  • Shin, Ji-Soo;Suh, Chang-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • A convergecast is a popular routing scheme in wireless sensor networks (WSNs) in which every sensor node periodically forwards measured data along configured routing paths to a base station (BS). Prolonging lifetimes in energy-limited WSNs is an important issue because the lifetime of a WSN influences on its quality and price. Low-energy adaptive clustering hierarchy (LEACH) was the first attempt at solving this lifetime problem in convergecast WSNs, and it was followed by other solutions including power efficient gathering in sensor information systems (PEGASIS) and power efficient data gathering and aggregation protocol (PEDAP). Our solution-chain routing with even energy consumption (CREEC)-solves this problem by achieving longer average lifetimes using two strategies: i) Maximizing the fairness of energy distribution at every sensor node and ii) running a feedback mechanism that utilizes a preliminary simulation of energy consumption to save energy for depleted Sensor nodes. Simulation results confirm that CREEC outperforms all previous solutions such as LEACH, PEGASIS, PEDAP, and PEDAP-power aware (PA) with respect to the first node death and the average lifetime. CREEC performs very well at all WSN sizes, BS distances and battery capacities with an increased convergecast delay.