• Title/Summary/Keyword: Power transmission device

Search Result 414, Processing Time 0.024 seconds

Design of a Magneto-Rheological Fluid Clutch for Machine Tool Application (공작기계 적용을 위한 MR 클러치 설계)

  • Kim, Ock Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2009
  • Magneto-Rheological(MR) fluid composes of a base fluid and ferromagnetic particles less than tens of micrometer size dispersed in the fluid. It is called as a smart material because its rheological properties are changable by a magnetic field. Its important applications are active devices such as controllable dampers and controllable clutches. The merit of those products is that their functional characteristics are controllable such that they enable active control strategies. This paper proposes an idea for machine tool applications of the MR fluid clutch as a safety device for power transmission. FEM has been used for magnetic field analyses and the results are compared with some former experiments. Some design syntheses of the MR clutches are suggested and hopefully considered that it may be an effective safety device for power transmission of machine tools.

  • PDF

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes (텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발)

  • Kim, Doo-Hyeong;Shin, Nae-Ho;Oh, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In order to facilitate the electricity market operation and trade in the restructured environment, ample transmission capability should be provided to satisfy the demand of increasing power transactions. The conflict of this requirement and the restrictions on the transmission expansion in the restructured electricity market has motivated the development of methodologies to enhance the available transfer capability (ATC) of existing transmission grids. The insertion of flexible AC transmission System (FACTS) devices in electrical systems seems to be a promising strategy to enhance single area ATC and multi-area ATC. In this paper, the viability and technical merits of boosting single area ATC and multi-area ATC using Thyristor controlled series compensator (TCSC), static VAR compensator (SVC) and unified power flow controller (UPFC) in single device and multi-type three similar and different device combinations are analyzed. Particle swarm optimization (PSO) algorithm is employed to obtain the optimal settings of FACTS devices. The installation cost is also calculated. The study has been carried out on IEEE 30 bus and IEEE 118 bus systems for the selected bilateral, multilateral and area wise transactions.

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

A Study on Realization of Wireless Umbilical Device for Missile Systems (유도무기체계의 무선배꼽장치 구현연구)

  • Eun, Heehyun;Jung, Sukjong;Jung, Jaewon;Ro, Donggyu;Kang, Cheewoo;Park, Youngsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.813-821
    • /
    • 2017
  • This paper presents the study result on a realization of wireless umbilical device for missile systems. In general, a missile system is connected to a fire control equipment via an umbilical connector to get the electrical power for its internal equipment and communicate with each other. And these connectors inherently have many problems of mis-contact between pin and socket, and mis-separation during missile firing, etc. A wireless umbilical device using LC resonance is devised to solve these problems of the current technology. For hundreds of watts power transmission under the missile system environment of restricted space, we designed and made a prototype of wireless umbilical device. And we tested this wireless umbilical device with an aluminum cylinder having cutout windows which simulate missiles. We realized that the wireless technology can be used as a substitute for the conventional umbilical connectors, and EMI and environment tests should be followed further.

Device-to-Device Relay Cooperative Transmission Based on Network Coding

  • Wang, Jing;Ouyang, Mingsheng;Liang, Wei;Hou, Jun;Liu, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3431-3445
    • /
    • 2017
  • Due to the advantages of low transmit power consumption, high spectral efficiency and extended system coverage, Device-to-Device (D2D) communication has drawn explosive attention in wireless communication field. Considering that intra-cell interference caused between cellular signals and D2D signals, in this paper, a network coding-based D2D relay cooperative transmission algorithm is proposed. Under D2D single-hop relay transmission mode, cellular interfering signals can be regarded as useful signals to code with D2D signals at D2D relay node. Using cellular interfering signals and network coded signals, D2D receiver restores the D2D signals to achieve the effect of interference suppression. Theoretical analysis shows that, compared with Amplify-and-forward (AF) mode and Decode-and-forward (DF) mode, the proposed algorithm can dramatically increase the link achievable rate. Furthermore, simulation experiment verifies that by employing the proposed algorithm, the interference signals in D2D communication can be eliminated effectively, and meanwhile the symbol error rate (SER) performance can be improved.

Analysis of Data Transmission Rate and Power Consumption in Zigbee Based Electrocardiography (지그비 기반 심전계의 데이터 전송률과 소비 전력 분석)

  • Kim, Nam-Jin;Hong, Joo-Hyun;Lee, Tae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.96-104
    • /
    • 2006
  • In this study, data transmission ratio and power consumption issues of Zigbee based sensor module and personal digital assistant(PDA) were addressed to develop ECG telemetry device. PDA processes the data transmitted through serial port using non-blocking method. The transmission rate was dependent on the packet structure. It was 300 ECG samples/sec, when each packet was composed of 2 ECG data and 3-axial acceleration vector. Using two AAA batteries in series, operating time of the wireless sensor module was above 28 hours in average. Power consumption of PDA was dependent on screen ON/OFF condition and serial port usage. In this application, operating time of PDA was 5 hours in average. In conclusion, there was no problem in the power consumption of wireless sensor module and transmission rate, when the developed device was used as 24 hour Holter device. But, PDA has the problem of power consumption, which should be solved.

  • PDF

ECR device impedance matching circuit design (ECR장치의 임피던스 매칭회로 설계)

  • KIM, Sung-Wan;KIM, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.445-446
    • /
    • 2012
  • Recently the interest in wireless power transfer have been studied. ECR (Electromagnetic Coupled Resonance) device, depending on the size of the frequency characteristics of the structure, increasing in volume and larger volume of wireless power transmission device to make use of ECR is a big barrier. So to solve this problem for ECR device miniaturization and high efficiency has been actively studied. In this paper, the size of the device for ECR IM (Impedance Matching) by applying a one-turn coil circuit, remove the device in the form of ECR Network Analyzer measured by removing the one-turn coil has demonstrated the possibility of the device in the form of ECR.

  • PDF

Design of Nonlinear FACTS Controller with intelligent Algorithm (FACTS 비선형 지능 제어기 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.33-35
    • /
    • 2000
  • We propose a intelligent controller for FACTS(Flexible AC Transmission System) device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. The control signal which is provided for FACTS device installed in the network is produced. The proposed controller is applied to Unified Power Flow Controller(UPFC) to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of three machine nine bus power system.

  • PDF