• Title/Summary/Keyword: Power transformers.

Search Result 720, Processing Time 0.044 seconds

DGA Gases related to the Aging of Power Transformers for Asset Management

  • Kweon, Dongjin;Kim, Yonghyun;Park, Taesik;Kwak, Nohong;Hur, Yongho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.372-378
    • /
    • 2018
  • Life management technology is required as the failure risk of aged power transformers increases. Asset management technology is developed to evaluate the remaining life, establish the replacement strategies, and decide the optimal investment based on the reliability and economy of power transformers. The remaining life assessment uses data such as installation, operation, maintenance, refurbishment, and failure of power transformers. The optimal investment also uses data such as maintenance, outage, and social costs. To develop the asset management system for power transformers, determining the degradation parameters related to the aging of power transformers and evaluating the condition of power transformers using these parameters are important. In this study, since 1983, 110,000 Dissolved Gas Analysis (DGA) data have been analyzed to determine the degradation parameters related to the aging of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, and $C_2H_6$), TCG, CO, and $CO_2$ were analyzed. The end of life and failure rate (bathtub curve) of power transformers were also calculated based on the failure data from 1981 to 2014. The DGA gases related to discharge, overheating, and insulation degradation were determined based on alarm and failure rates. $C_2H_2$, $C_2H_6$, and $CO_2$ were discharge, oxidation, and insulation degradation parameters related to the aging of power transformers.

Representative Dissolved Gases indicating Aging of Power Transformers (전력용 변압기 경년열화와 관련된 DGA 대표가스에 관한 연구)

  • Kweon, Dongjin;Kim, Yonghyun;Joo, Byoungsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The life management technology becomes important as the failure risk of the aged power transformers increases. Asset management technology, therefore, has been developed to evaluate the remaining life and build replacement strategies of power transformers, which enables an optimal investment decisions based on reliability and economic feasibility. The remaining life assessment technology uses data related to such as installation, operation, maintenance, refurbishment, and disposed history of power transformers. The optimal investment decision additionally uses data related to failure and social costs. To develop the asset management technology in power transformers, it is important to find deterioration parameters directly indicating degradation of power transformers. In this study, 110,000 DGA data during the past 35 years have been analyzed in order to find the deterioration parameters related to the degradation of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, $C_2H_6$), TCG CO, and $CO_2$ were analyzed as deterioration parameters. The origin of the gas was discussed in connection with discharge, overheating and insulation aging.

Design and Manufacture of Step-down Piezoelectric Transformers Multi-layered by Ceramic Sheets (적층형 압전세라믹을 이용한 강압용 압전변압기의 설계 및 제조)

  • 정현호;이원재;김인성;송재성;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.680-683
    • /
    • 2001
  • The output characteristics of step-down piezoelectric transformer is changed by a structure of layers. In this paper, we simulated output characteristics of multi-layer piezoelectric transformers with variation of output layers. Also, fabricated piezoelectric transformers were compared with simulated data. From simulated piezoelectric transformers, the output voltage decreased with increasing number of layers. From these results, piezoelectric transformers were made and the output electrical power of the transformers was measured at resonance frequency and at other frequency. The electrical power of transformers was measured on each transformer's resonance mode. However, measured value of 12-layed transformer's output power was smaller than that of 6-layered transformer's one. It is supposed that internal capacitance and reactance of the piezoelectric transformer's were effected in this result. Therefore we need to connect other road resistance and capacitance in output circuit, in order to increase electrical power of transformers.

  • PDF

A Study on the Impact of the Impedance Change of 345[kV] Power Transformers on Overall System Performance (345[kV] 전력용 변압기 %임피던스 변화에 따른 계통영향 분석)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Song, Ji-Young;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.140-149
    • /
    • 2011
  • This paper deals with the impact analysis of the impedance change of 345/154[kV] power transformers on the KEPCO system's overall performance. Through the steady-state and dynamic analysis of power system, the maximum available impedance of power transformers were determined. Checking violation of short-circuit current ratings and transformer overload, parallel operation of power transformers, calculation of voltage variation ratio according to the impedance changes of power transformers are included in the steady-state analysis. In addition, transient and voltage stability analysis are also performed in the study. Available magnitudes to be able to change the impedance of the transformers in KEPCO system are finally determined in the paper.

The Study on the Temperature Distribution for 154kV Power Transformers (154kV 전력용 변압기의 온도분포에 관한 연구)

  • Woo, Jung-Wook;Koo, Kyo-Sun;Kwak, Joo-Sik;Kim, Kyung-Tak;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.56-61
    • /
    • 2011
  • The temperature of power transformers is very important factor for power system operation in substation because load capacity and limited lifetime of power transformers are determined by winding temperature. Also, The temperature of power transformers varies with the structure, capacity, operation condition and manufacturers. Thus, it is necessary for temperature distribution to be exactly investigated because of efficient load management and prediction of limited lifetime. Nevertheless, there was no case of analysis as well as measurement of the temperature of power transformers. In this paper, we manufactured the 154kV standard power transformer for the test. And we measured the temperature by the heat run test and analyzed the temperature distribution of transformer.

Power Decoupled Multi-Port Dual-Active-Bridge Converter Employing Multiple Transformers for DC Distribution Applications (복수의 변압기를 사용하여 독립 전력제어가 가능한 DC 배전용 다중포트 Dual-Active-Bridge 컨버터)

  • Kim, Inhyeok;Sim, Ju-Young;Lee, Jun-Young;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • This study proposes a power decoupled multi-port dual-active-bridge (DAB) DC-DC converter employing multiple transformers. Conventional multiport DAB DC-DC converters experience a power coupling issue from the use of a single transformer, which essentially requires complex power decoupling control. To solve this issue, a multiport DAB DC-DC converter employing multiple transformers is proposed to decouple output power without additional complex control algorithms. The proposed converter uses multiple transformers that can expand output ports easily. Therefore, transformers and the proposed multi-port DAB converter can be designed simply. In addition, the number of coupling inductors can be reduced in the proposed three-port DAB converter compared with that in conventional multiport DAB converters. The power decoupling characteristics and equivalent circuit of the proposed converter are analyzed using theoretical model approaches. Finally, a 3-kW laboratory prototype is developed to verify the effectiveness of the proposed converter.

Fault Discrimination of Power Transformers using Vibration Signal Analysis (진동 신호 분석을 이용한 전력용 변압기의 고장 판별)

  • Yoon, Yong-Han;You, Chi-Hyoung;Kim, Jae-Chul;Chung, Chan-Soo;Lee, Jung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In power transformers, vibration signals can occur at winding and core due to the change of current, voltage, and temperature and the deformation of winding and core. The deformation of winding and core occurs electromagnetic force induced by fault current in power systems. There firem the changes of vibration signals can be very different in normal or fault states of power transformers. We edtect and analyze the changes of vibration signals and use them as a tool for fault diagnosis of power transformers. This paper presents fault discriminating polliblility using the changes of fundamental waves and higher harmonics in power transformers. We showed the fault discriminating functions that are made at each case ; normal state and fault state. These functions are tested by the detected vibration signals, and we showed that the proposed method can discriminate the state of power transformers.

  • PDF

The Statistical Analysis of Operating Life Characteristic on Poler Transformers(I) (전력용 변압기 운전수명 특성의 통계적 분석(I))

  • Kang, Dong-Sik;Kim, Kwang-Hwa;Kweon, Dong-Jin;Kim, Moon-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1885-1887
    • /
    • 1996
  • Power transformers are the most important facilities in the substation of electrical power, yet they do not have the efficient operating life characteristics which are the important elements of repairing and maintenance in regional conditions. This paper describes the statistical analysis of operating conditions and troubles on transformers for the operating life assessment using Statistical Analysis System programs, Hazard method and Weibull distributions. We analyze transformers in several methods, and compares correlation relationship of operating life and troubles. Therefore, this study will be the useful basic operating life prediction technique of power transformers in the future.

  • PDF

A Sensitivity Measurement of Ultrasonic Signals by PZT Sensor (PZT 센서를 이용한 초음파 신호 감도측정)

  • 최인혁;권동진;윤장완;정길조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.403-405
    • /
    • 1999
  • Power transformers have a tendency of ultra-high voltage and huge capacity as power demand increases day after day. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important In power transformers because of economic loss and its spreading effect. Hence, this study presents experiments of partial discharge method using ultrasonic sensor in order to confirm the possibility of ultrasonic sensor in power transformers. It carries out the experiments of measuring delay time between ultrasonic sensor and transducer, sensitiities by temperature change of oil and by barriers inside transformers. It is also Included wave analysis by ultrasonic sensor for needle-plate electrode powered on through high-voltage equipments.

  • PDF

Optimal Placement Design of Phase-Shifting Transformers for Power System Congestion Problems (계통 혼잡처리를 위한 Phase-Shifting Transformers의 최적 위치 선정)

  • Kim Kyu-Ho;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.567-572
    • /
    • 2005
  • This paper presents a scheme to design optimal placement of phase-shifting transformers for power system congestion problems. A good design of phase-shifting transformers placement can improve total transfer capability in interconnected systems. In order to find the optimal placement of phase-shifting transformers, the power flows of the interesting transmission lines are evaluated using sequential quadratic programming technique. This algorithm considers power balance equations and security constraints such as voltage magnitudes and transmission line capacities. The proposed scheme is tested in 10 machines 39 buses and IEEE 57 buses systems. Test result shows that the proposed method can find the optimal placement of phase-shifting transformers to solver power system congestion problems.