• 제목/요약/키워드: Power transfer distribution factor

검색결과 23건 처리시간 0.02초

Solving Mixed Strategy Nash-Cournot Equilibria under Generation and Transmission Constraints in Electricity Market

  • Lee, Kwang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.675-685
    • /
    • 2013
  • Generation capacities and transmission line constraints in a competitive electricity market make it troublesome to compute Nash Equilibrium (NE) for analyzing participants' strategic generation quantities. The NE can cause a mixed strategy NE rather than a pure strategy NE resulting in a more complicated computation of NE, especially in a multiplayer game. A two-level hierarchical optimization problem is used to model competition among multiple participants. There are difficulties in using a mathematical programming approach to solve a mixed strategy NE. This paper presents heuristics applied to the mathematical programming method for dealing with the constraints on generation capacities and transmission line flows. A new formulation based on the heuristics is provided with a set of linear and nonlinear equations, and an algorithm is suggested for using the heuristics and the newly-formulated equations.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

미세채널 워터블록의 유입부 형상에 따른 유량분배 및 열유동 특성 (Flow Distribution and Heat Transfer Characteristic of the Microchannel Waterblock with Different Shape of Inlet)

  • 최미진;권오경;윤재호
    • 설비공학논문집
    • /
    • 제21권7호
    • /
    • pp.386-393
    • /
    • 2009
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with flow distributions in each channels. Results of a numerical analysis using the CFX-11 are compared with results of an experiment. Numerical analysis and experiment are conducted under an input power of 150 W, inlet temperature of $20^{\circ}C$ and mass flow rates of $0.7{\sim}2.0$ kg/min. Base temperature and pressure drop are investigated with standard deviations of mass flow rates in each channels of samples. The flow distribution and j/f factor of the sample 4 is increased by about 65.7% and 42.6%, compared to that of the reference model sample 3.

소형 압전 에너지 하베스터 구현을 위한 세라믹 크기 변화 (Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester)

  • 김형찬;정우석;강종윤;윤석진;주병권;정대용
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.267-272
    • /
    • 2008
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the small wireless sensor nodes. As piezoelectric uni-morph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Through our previous results, when stress was applied on the cantilever, stress was concentrated on the certain point of the ceramic of the cantilever. In this study, for miniaturing the energy harvester, we investigated how the size of ceramics and the stress distribution in ceramic affects energy harvester characteristics. Even though the area of ceramic was 28.6 % decreased from $10{\times}35{\times}0.5mm^3$ to $10{\times}25{\times}0.5mm^3$, both samples showed almost same maximum power of 0.45 mW and the electro-mechanical coupling factor ($K_{31}$) of 14 % as well. This result indicated that should be preferentially considered to generate high power with small size energy harvester.

다자게임에서 발전력제약이 복합전략 내쉬균형에 미치는 영향 (Effect of Generation Capacity Constraints on a Mixed Strategy Nash Equilibrium in a Multi-Player Game)

  • 이광호
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.34-39
    • /
    • 2008
  • Nash Equilibrium(NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. Congestion on a transmission line makes it difficult to compute the NE due to causing a mixed strategy. In order to compute the NE of a multi-player game, some heuristics are proposed with concepts of a key player and power transfer distribution factor in other studies. However, generation capacity constraints are not considered and make it more difficult to compute the NE in the heuristics approach. This paper addresses an effect of generation capacity limits on the NE, and suggest a solution technique for the mixed strategy NE including generation capacity constraints as two heuristic rules. It is reported in this paper that a role of the key player who controls congestion in a NE can be transferred to other player depending on the generation capacity of the key player. The suggested heuristic rules are verified to compute the mixed strategy NE with a consideration of generation capacity constraints, and the effect of the generation constraints on the mixed strategy NE is analyzed in simulations of IEEE 30 bus systems.

Color Image Analysis of Cosmetic Web-Site for Color Marketing

  • Lee, Jeongman;An, Jongsuk
    • 패션비즈니스
    • /
    • 제16권6호
    • /
    • pp.127-143
    • /
    • 2012
  • This study aims to derive the sensitive image analysing the color tones based on the web-sites of cosmetic brand and to know how the web-site color tones and the color tone image as visual factor for information transfer do influence the effective communication. 10 cosmetic brand web-sites are selected based on the pre survey, and the main page color tones of cosmetic brand web-site are analyzed by Color Catch and Munsell Conversion program, whereas the composition of color tones and color image such as the main trend colors, secondary colors, accent colors and etc are analyzed by a graphic professional program 'Adobe Photoshop'. 5 color tone groups are classified as Black&White, Green&White, Blue&White, Purple&White and Red&White according to the color distribution chart, and the emotional language is derived applying them to the pre research and IRI image scale. The color association is empirically analyzed by a survey method. The study results finally show Black&White is proper for expression of high quality and modern image, Green&White for pure and clean image, Blue&White for cool and transparent image, Purple&White for mysterious and elegant image respectively. This study results are necessary for plan of color delivering the strong transferring power of visual information the time when to make the effective web-sites, and it hopefully will be utilized as the basic data for the color marketing to actively express the brand identity and to satisfy the consumers' sensitivity.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성 (Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage)

  • 최석민;김수원;박희승;김용진;조형희
    • 한국추진공학회지
    • /
    • 제24권5호
    • /
    • pp.43-55
    • /
    • 2020
  • 가스터빈 블레이드의 핀-휜 배열의 냉각 성능을 향상시키기 위하여 분절핀을 설치하여 효과를 분석하였다. 분절핀의 위치에 따른 유동 및 열전달 특성 변화를 수치해석을 통해 분석하였다. 분절핀이 설치되지 않은 엇갈림 핀-휜 배열인 기존형상 와 분절핀이 X2/Dp=1.25 간격 떨어진 분절핀적용형상 1과 X3/Dp=1.75 간격 떨어진 분절핀적용형상 2 를 비교하였다. 해석 결과 분절핀의 설치로 인해 핀-휜 배열 전단부에서 발생하는 말발굽와류의 세기가 강화되는 것을 확인하였다. 또한 핀-휜 배열 후단부에서 발생하는 멤돌이 와류의 세기가 약해지는 것을 확인하였다. 이로 인해 바닥면의 열전달 분포가 크게 상승하는 것을 확인 하였다. 반면 분절핀의 설치로 인해 압력손실은 증가하였으나, 열성능계수는 분절핀 적용형상 2 에서 최대 23.8% 가량 증가하는 것을 확인하였다. 이를 통해 향후 가스터빈 핀-휜 냉각 유로 설계 시 분절핀을 설치하면 냉각 성능이 증대 될 것으로 판단된다.

라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도 (Derivation of Nacelle Transfer Function Using LiDAR Measurement)

  • 김현구;강용혁;윤창열
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.929-936
    • /
    • 2015
  • 풍력터빈 블레이드의 후단, 나셀 상부에 설치되는 나셀 풍속계는 블레이드 회전에 따른 후류효과 및 나셀형상 등으로 인하여 풍력터빈에 입사되는 자연풍속과는 다른 왜곡된 풍속을 측정한다. 풍력터빈 출력성능의 신뢰성 확보를 위해서는 나셀풍속을 자연풍속으로 보정하는 나셀전달함수를 유도하여 성능곡선을 보정하여야 한다. 본 연구에서는 전라남도 비금도 북부 해안에 건설된 신안풍력발전소에서 지상기반 원격탐사 장비인 라이다(LiDAR)를 설치하여 나셀 풍속계와 동일 높이에서의 자연풍속을 측정하였다. 나셀풍속을 자연풍속으로 보정하는 기존의 단순회귀분석에 의한 선형 나셀전달함수를 개선하기 위하여 다중회귀분석에 의한 비선형 나셀전달함수를 유도하였다. 나셀전달함수로 계산한 보정풍속을 풍력터빈 출력곡선에 대입하여 산출한 이론 발전량과 실제 발전량의 잔차를 비교하여 개선효과를 검증하였다. 다중회귀분석 나셀전달함수는 단순회귀분석에 비해 풍속의 표준오차는 9.4% 감소하였으며, 발전량 잔차 분포의 평균은 6.5% 감소하여 개선효과가 있음을 확인하였다.