• Title/Summary/Keyword: Power transfer

검색결과 3,284건 처리시간 0.027초

An Electric-Field Coupled Power Transfer System with a Double-sided LC Network

  • Xie, Shi-Yun;Su, Yu-Gang;Zhou, Wei;Zhao, Yu-Ming;Dai, Xin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.289-299
    • /
    • 2018
  • Electric-field coupled power transfer (ECPT) systems employ a high frequency electric field as an energy medium to transfer power wirelessly. Existing ECPT systems have made great progress in terms of increasing the transfer distance. However, the topologies of these systems are complex, and the transfer characteristics are very sensitive to variations in the circuit parameters. This paper proposes an ECPT system with a double-sided LC network, which employs a parallel LC network on the primary side and a series LC network on the secondary side. With the same transfer distance and output power, the proposed system is simpler and less sensitive than existing systems. The expression of the optimal driving voltage for the coupling structure and the characteristics of the LC networks are also analyzed, including the transfer efficiency, parameter sensitivity and total harmonic distortion. Then, a design method for the system parameters is provided according to these characteristics. Simulations and experiments have been carried out to verify the system properties and the design method.

Wireless Synchronous Transfer of Power and Reverse Signals

  • Li, Yang;Li, Yumei;Feng, Shaojie;Yang, Qingxin;Dong, Weihao;Zhao, Jingtai;Xue, Ming
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.827-834
    • /
    • 2019
  • Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

부하집중지로의 송전용량 증대를 위한 전압형 HVDC의 활용 방안 (Transfer Capability Enhancement to Population Center Using VSC HVDC System)

  • 오세승;한병문;차준민;장길수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권6호
    • /
    • pp.236-241
    • /
    • 2006
  • This paper presents a transfer capability enhancement process using VSC HVDC system which can control active power as well as reactive power. The transfer capability is constrained by stability like voltage stability as well as thermal rating of power system components. Transfer capability of the power system limited by these constraints may be enhanced by reactive power control ability and active power flow control ability of the VSC HVDC system. To enhance the transfer capability of the system using VSC HVDC, selection of the HVDC installation site is performed. In this work, power zones which consist of major power plants and their sinks are identified using power tracing and distribution factor. Alternative route of major AC transmission line in the power zone is identified as VSC HVDC system.

철도용 무선전력전송시스템의 급전선로와 레일유기전압의 관계 (Relation between Induced Voltage of Rail and Feeding Line of Wireless Power Transfer System for Railway Application)

  • 김재희;박찬배;정신명;이승환;이병송;이준호;이수길
    • 한국철도학회논문집
    • /
    • 제17권4호
    • /
    • pp.228-232
    • /
    • 2014
  • 철도의 무선전력전송 시스템을 구현하는데 있어 급전선로에서 생성된 자기장은 레일에 유기전압을 형성한다. 레일의 유기전압은 궤도회로의 동작 및 안전사고에 영향을 줄 수 있기 때문에 최소화하는 것이 필요하다. 본 논문에서는 3가지 무선전력전송 선로에 대해서 레일에 형성되는 유기전압의 관계를 시뮬레이션을 통하여 살펴보고 레일 유기전압을 줄이기 위한 급전선로의 자기장 분포를 제시한다.

Characteristics of Shield Materials for Wireless Power Transfer

  • Chu, In Chang;Jeong, Jinseong
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.291-294
    • /
    • 2014
  • In this paper, we examine the electrical and magnetic properties of three different types of shield materials used for wireless power transfer systems: namely, FeSiAl-composite, NiZn-ferrite, and FeSi-amorphous types. The power transfer efficiency and resistance of an RX coil are measured, while varying the shield thickness. For all three types, a thicker shield provides better power transfer efficiency. Analysis of the measurements shows that the FeSiAl-composite type is suitable for systems with size limitation. In terms of magnetic properties, the FeSi-amorphous type shows the best features, and is suited to high power applications. This work can be used as a guideline to select suitable shielding material in various wireless power transfer systems.

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

전력변환차단기의 트리거 기구 최적화 (Optimization ova Mechanism for Power Transfer Breakers)

  • 조두현;김권희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.735-739
    • /
    • 2002
  • PTB(Power Transfer Breaker) is a device which incorporate the functions of ACB(Air Circuit Breaker) and ATS(Automatic Transfer Switch). ACB is a circuit breaker against overload and ATS is a switching device to transfer the load between two electric power sources. An existing PTB design based upon the 5 bar & cam mechanism has been regarded to be too complex and thus a simpler 4 bar mechanism with trigger lock is proposed. Experimentation and optimization of the trigger lock is presented.

  • PDF

무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발 (Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development)

  • 염우섭;황건;이성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF