• 제목/요약/키워드: Power system faults

검색결과 516건 처리시간 0.024초

소형전자계산기에 의한 대전력계통의 고장해석 (Analysis of Faults of Large Power System by Memory-Limited Computer)

  • 박영문
    • 전기의세계
    • /
    • 제21권4호
    • /
    • pp.39-44
    • /
    • 1972
  • This paper describes a new approach for minimizing working memory spaces without loosing too much amount of computing time in the analysis of power system faults. This approach requires the decomposition of alrge power system into several small groups of subsystems, forms individual bus impedance matrics, store them in the auxiliary memory, later assembles them to the original total system by algorithms. And also the approach uses techniques for diagonalizing primitive impedances and expanding the system bus impedance matrices by adding a fault bus. These scheme ensures a remarkable savings of working storage and continous computations of fault currents and voltages with the voried fault locations.

  • PDF

Discrimination of Arcing Faults from Normal Distribution Disturbances by Wave form Distortion Analysis

  • Kim, C. J.
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.52-57
    • /
    • 1996
  • Detection of arcing high impedance faults has been a perplexing in the power distribution protection. Transient analysis of distribution disturbances for fault discrimination from other normal events is important for a secure protection of the power system. A simple parameter of wave form distortion quantification is used to analyze the behaviors of arcing faults and normal distribution disturbances. Theoretical perspectives of the transients were studied and actual disturbances were examined. From this investigation, a discrimination guideline based on the revised crest factor is developed. The discrimination method has a high potential to enhance the reliability and security for the distribution system protection.

  • PDF

Design of Direct-Current Fuzzy Controller for Mitigating Commutation Failure in HVDC System

  • Gao, Benfeng;Yuan, Kewei;Dong, Peiyi;Luo, Chao;Zhao, Shuqiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1450-1458
    • /
    • 2018
  • Commutation failures can deteriorate the availability of high-voltage direct current (HVDC) links and may lead to outage of the HVDC system. Most commutation failures are caused by voltage reduction due to ac system faults on inverter side. The commutation failure process can be divided into two stages. The first stage, from the occurrence to the clearing of faults, is called 'Deterioration Stage'. The second stage, from the faults clearing to restoring the power system stability, is called 'Recovery Stage'. Based on the analysis of the commutation failure process, this paper proposes a direct-current fuzzy controller including prevention and recovery controller. The prevention controller reduces the direct current to prevent Commutation failures in the 'Deterioration Stage' according to the variation of ac voltage. The recovery controller magnifies the direct current to speed up the recovery of power system in the 'Recovery Stage', based on the recovery of direct voltage. The validity of this proposed fuzzy controller is further proved by simulation with CIGRE HVDC benchmark model in PSCAD/EMTDC. The results show the commutation failures can be mitigated by the proposed direct-current fuzzy controller.

Design and Implementation of a Fault-Tolerant Magnetic Bearing System

  • Park, B.C.;Noh, M.D.;Ro, S.K.;Kyung, J.H.;Park, J.K.
    • KSTLE International Journal
    • /
    • 제4권2호
    • /
    • pp.37-42
    • /
    • 2003
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults which are the most common faults in a magnetic bearing system. We implemented the existing fault-tolerant algorithms to experimentally prove the adequacy of the algorithms for industrial applications. As it turns out, the system can operate even with three simultaneously failing poles out of eight actuator poles.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF

APPLICATION OF A FUZZY EXPERT MODEL FOR POWER SYSTEM PROTECTION

  • Kim, C.J.;B.Don-Russell
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1074-1077
    • /
    • 1993
  • The objective of this paper is to develop a fuzzy logic based decision-making system to detect low current faults using multiple detection algorithms. This fuzzy system utilizes a fuzzy expert model which executes an operation without complicated mathematical models. This fuzzy system decides the performance weights of the detection algorithms. The weights and the turnouts of the detection algorithms discriminate faults from normal events. This system can also be a generic group decision-making tool for other areas of power system protection.

  • PDF

유입변압기 고장분류를 위한 PNN 기반 Rogers 진단기법 개발 (PNN based Rogers Diagnosis Method for Fault Classification of Oil-filled Power Transformer)

  • 임재윤;이대종;지평식
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.280-284
    • /
    • 2016
  • Stability and reliability of a power system in many respects depend on the condition of power transformers. Essential devices as power transformers are in a transmission and distribution system. Being one of the most expensive and important elements, a power transformer is a highly essential element, whose failures and damage may cause the outage of a power system. To detect the power transformer faults, dissolved gas analysis (DGA) is a widely-used method because of its high sensitivity to small amount of electrical faults. Among the various diagnosis methods, Rogers diagonsis method has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using PNN(Probability Neural Network) based Rogers diagnosis method. The test result show better performance than conventional Rogers diagnosis method.

FCM과 ELM을 이용한 전력용 변압기의 모니터링 알고리즘 (A Monitoring Algorithm using FCM and ELM for Power Transformer)

  • 지평식;임재윤
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.228-233
    • /
    • 2012
  • In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for monitoring of power transformer by FCM(Fuzzy c-means) and ELM(Extreme Learning Machine). The proposed technique make it possible to diagnosis the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

Design of SPS in the Korean Power System Against Faults on 765 KV Lines

  • Park Jong-Young;Park Jong-Keun;Jang Byung-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.132-137
    • /
    • 2005
  • In Korea, the protection systems against the instability of the nation's power system are insufficient in contrast with many other countries. In addition, there have just been studies carried out on detecting power system instability, while only a few studies pertaining to protection plans against instability exist. This paper focuses on systems to protect against the instability phenomena in the Korean power system. In this paper, we survey possible contingencies in the Korean power system and suggest outline and specs of the SPS (System Protection Scheme) against faults on the 765 kV line, based on simulations. It is concluded that event-based SPS for transient stability is appropriate for the Korean power system. In the simulations, the most severe contingency on the Korean power system is the fault on 765 kV transmission lines. If one of these lines is tripped by a fault, synchronism may be lost on the power plants near this line because of heavy power flow carried by them. In addition, undervoltage in the Metropolitan region is a serious problem in this case since this region receives about half its total power flow through these lines. In order to prevent a synchronism loss, some power plants have to be rejected according to the situations in the simulations.

MTS를 이용한 가압기 압력 제어 계통의 조기 고장 감지에 대한 연구 (A study on early faults detection of pressurizer pressure control system using MTS)

  • 차재민;김준영;신중욱;염충섭;강성기
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1385-1398
    • /
    • 2016
  • 원자력 발전소의 가압기는 1차 계통의 냉각재가 고온에서도 기화되지 않도록 압력을 가해주는 장치이다. 즉, 가압기의 고장은 원자력 발전소에 큰 영향을 미칠 수 있으며, 따라서, 가압기의 조기 고장 감지는 원자력 발전소의 안전에 매우 중요하다. 이를 위해, 본 연구에서는 마할라노비스 거리 개념과 다구찌 품질 공학 이론에 기반한 패턴 분류 인식 알고리즘 중 하나인 마할라노비스 다구찌 시스템(MTS)을 가압기 압력 제어 계통의 조기 고장 감지에 적용하였다. MTS의 고장 감지 성능을 검증하기 위해, 실제 원자력 발전소에서 발생하고 있는 가압기 압력전송기 고장 시나리오를 대상으로 하여, Full Scope 시뮬레이터를 통해 모사된 데이터에 적용하였다. 실험 결과, MTS는 단일 센서모니터링 기반의 전통적인 고장 감지에 비하여 매우 빠르게 고장을 감지할 수 있었다.