• Title/Summary/Keyword: Power system control

Search Result 10,093, Processing Time 0.044 seconds

A Study on Computer Control of Voltage-Rective Power Part 1-Development of Computer Control Seheme (전압, 무효전력의 계산기제어에 관한 연구 1)

  • Kil Yeong Song
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.81-88
    • /
    • 1976
  • The present voltage-reactive power control aims at an overall coordination of reactive power sources and voltage regulation devices to keep the bus voltages within their allowable bounds on one hand and to reduce the transmission losses on the other. This paper presents an efficient computer control scheme for the real-time control of system voltage and reactive power on the basis of a simplified linear equation by using the system characteristic constant. Computational algorithm is used for the minimization of bus voltage deviation in the first phase of optimization and for the reduction of transmission losses under the constraint of vlotage settling condition in the second phase. The numerical example for sample practical system is also given. The present study on the computer control scheme will contribute to the automation of power system operation in the near future.

  • PDF

Capacity of DS/CDMA system with imperfect power-control (불완전한 전력 제어 셀룰라 DS/CDMA 시스템의 용량 분석)

  • 김준철;박진수;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1632-1642
    • /
    • 1997
  • In this paper, we studied the effects of the power control imperfection on the system performances of a microcellular DS/CDMA system. The maximum user capacity, defined as the maximum number of users can be serviced simultaneouly, meeting a given voice quality, is first considered. Then the performence degradation due to the control error is analyzed. The frequency selective Raician channel model is used to characterize a microcellular mobile communication environment. The DS/CDMA system under consideration uses BPSK modulation and convolutional coding/Viterbe decoding with soft decision for forward error correction. It is shown that the user capacity falls linearly down with the increase of the power control error(in terms of the standard deviation in dB) and the interference from users outside the third tier cells have a minor effect on the performance. And the performance of DS/CDMA with the imperfect power control model is made to be less than 50% of that with perfect power control moded.

  • PDF

A Case Study on Application of Fault Tolerant Control System to Boiler Controller in Power Plant (발전소 보일러 제어기에 대한 내고장성 제어 시스템의 적용에 관한 연구)

  • ;;;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.10-19
    • /
    • 1990
  • A fault tolerant control system, in which a digital back-up controller system is added on the existing analog control system, is developed for enhancing reliability of boiler control system in power plant. The digital back-up controller system(DBCS) has a multi-processor structure with capabilities of fault diagnosis, back-up control, self test, and graphic monitoring. Specifically, switching mechanism composed of expandable modules is designed so that back-up controller takes over any faulty control loops and the number of back-up control loops is determined as that of simultaneous faults. A process simulator that simulates the boiler analog control system is developed for safety test and performance evaluation prior to real plant application. DBCS is installed at the Ulsan thermal power plant, and fault tolerant control performance is assured under the faults that some controller modules are pulled out.

  • PDF

D2D Power Control in the Cellular System: Non Cooperative Game Theoretic Approach

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2018
  • In this paper, we consider the game theoretic approach to investigate the transmit power optimization problem where D2D users share the uplink of the cellular system. Especially, we formulate the transmit power optimization problem as a non cooperative power control game. In the user wide sense, each user may try to select its transmit power level so as to maximize its utility in a selfish way. In the system wide, the transmit power levels of all users eventually converge to the unique point, called Nash Equilibrium. We first formulate the transmit power optimization problem as a non cooperative power control game. Next, we examine the existence of Nash Equilibrium. Finally, we present the numerical example that shows the convergence to the unique transmit power level.

Controller Optimization for Bidirectional Power Flow in Medium-Voltage DC Power Systems

  • Chung, Il-Yop;Liu, Wenxin;Cartes, David A.;Cho, Soo-Hwan;Kang, Hyun-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.750-759
    • /
    • 2011
  • This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC-DC converters using $L_1$ control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.

Transient Performance Improvement in the Boundary Control of Boost Converters using Synthetic Optimized Trajectory

  • Feng, Gaohui;Yuan, Liqiang;Zhao, Zhengming;Ge, Junjie;Ye, Xiuxi;Lu, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.584-597
    • /
    • 2016
  • This paper focuses on an improvement in the transient performance of Boost converters when the load changes abruptly. This is achieved on the basis of the nature trajectory in Boost converters. Three key aspects of the transient performance are analyzed including the storage energy change law in the inductors and capacitors of converters during the transient process, the ideal minimum voltage deviation in the transient process, and the minimum voltage deviation control trajectory. The changing relationship curve between the voltage deviation and the recovery time is depicted through analysis and simulations when the load suddenly increases. In addition, the relationship curve between the current fluctuation and the recovery time is obtained when the load suddenly decreases. Considering the aspects of an increasing and decreasing load, this paper proposes the transient performance synthetic optimized trajectory and control laws. Through simulation and experimental results, the transient performances are compared with the other typical three control methods, and the ability of proposed synthetic trajectory and control law to achieve optimal transient performance is verified.

Mode Transfer Sequence and Control of Single-phase UPS System (단상 UPS 시스템의 모드 절환 시퀀스 및 제어)

  • Lee, Sang-Suk;Lee, Soon-Ryung;Choi, Bong-Yeon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.108-115
    • /
    • 2014
  • Recently, Uninterruptible power supply(UPS) is spotlighted from concern about black out, due to reserve power problem caused by increased power consumption. When fault occurs on the grid, UPS system supplies power to loads instead of the grid. Also, it is an advantage of possible operation as Energy storage system(ESS). Bi-directional power control of AC/DC Pulse width modulation(PWM) converter is essential for grid-connected UPS system. And, mode transfer control has to be performed considering phase and dynamic characteristic under grid condition. In this paper, control of mode transfer and bi-directional power control of AC/DC PWM converter is proposed for UPS system. Also, it is verified by simulation and experimental results.

Introduction of Sensors in Turbine Control Systems and Excitation Systems (발전소 터빈 제어시스템과 여자시스템에 사용되는 센서 소개)

  • Shin, Man-Su;Woo, Ju-Hee;Kim, Jong-An;Choe, In-Gyu;Ryu, Ho-Seon;Jeong, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1818-1819
    • /
    • 2011
  • Turbine control system and excitation system have close relationship in the dynamic and real power system. Turbine control systems control the active power of generator and excitation systems control the voltage and reactive power of generator. The several sensors' characteristics in turbine control systems and excitation systems were reviewed.

  • PDF

Development of an Interactive Graphic Software for the Education and Training of Power System Operation and Control (전력계통 운용 및 제어에 대한 교육 및 훈련용 대화식 그래픽 소프트웨어 개발)

  • Shin, Joong-Rin;Lee, Wook-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.932-940
    • /
    • 1999
  • This paper discusses the development of an interactive and graphic software for the education and training of power system operation and control, especially for students and beginners. This software has a lot of functions for users to simulate the power system operation and control with ease. These functions included in this software are followings. First, this software includes a Graphic User Interface (GUI) - which contains interactive simulation scheme, Windows dialog box, graphic representations, and graphic icons - so that users can handle the software in user-friendly environments. Second, it uses a graphic editor so that users can easily edit the one-line diagram of the power system. Third, it prepares a database system so that users can manage the power system data for simulation easily. Fourth, the application modules included in the software are the Economic Dispatch (ED) and the Automatic Load-Frequency Control (ALFC). These application modules are designed as independent modules. Using the ED module, users can understand the basic concepts of the ED with ease. And using the ALFC module, they can easily acquire the basic understanding of the response of the ALFC between the two-area systems. The proposed software is tested on both the 16 bus and the two-area sample system. The test has confirmed the functions of the developed software. It is anticipated that the software will be useful for the education and training of power system operation and control for the power engineering study at university or for the training of the beginner at power industry.

  • PDF

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.