• Title/Summary/Keyword: Power system construction

Search Result 1,649, Processing Time 0.04 seconds

A basic study 3D model advancement method for nuclear power plant (원자력 발전설비의 3D 모델 상세화 방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.37-38
    • /
    • 2018
  • BIM(Building Information Modeling) in the architecture, VDC(Virtual Design and Construction) defined CIFE(Center for Integrated Facility Engineering) of Stanford university in USA, and Data-driven design definition issued by TECDOC-1284 of IAEA are doing data-level design generated by 3D CAD technology, integrating and managing related information based on the 3D model, and Using 3D models effectively during nuclear power plant life cycle. 3D model of domestic nuclear power industry is using interference review between design fields, 4D system linked 3D construction model and schedule activity, but the 3D model generated in the design phase is effectively not utilized during the construction, operation, decommissioning. therefore, This study is aimed to suggest 3D model LOD(Level of Detail) advancement method through the analysis of existing literature, 2D drawings, and 3D models throughout nuclear power plant lifecycle.

  • PDF

Bucket Actuator Pressure Control by Independent Metering Valve for Excavator (독립제어 밸브에 의한 굴삭기 버켓 액추에이터 압력제어)

  • Yang, Joo-Ho;Jung, Tae-Rang
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.36-42
    • /
    • 2016
  • A cylinder control system of the conventional construction machine has been controlled by hydraulic spool valves. This system is low-cost but system efficiency is not high. Recently, to improve this, all valves are controlled electronically and independently. Bu and Yao suggested four way electronic hydraulic control valve system. It is called IMVT(Independent Metering Valve Technology). The purpose of the study is to find proper IMV pressure control method for excavator and to validate excavator's bucket regeneration energy effect by controlling the IMV system. In this paper, we mathematically describe the bucket system of excavator first. And then, based on these results, we design the control system which is divided into two operations(none regeneration or regeneration).The results of the experiment show the desirable performance and usefulness of the designed control system.

System Construction Method of Parallel Operation System constructed with Three Electric Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.451-457
    • /
    • 2014
  • Parallel operation systems have an advantage in that they can be constructed quickly and inexpensively by combining existing electric power converters. However, in this case, there is a peculiar problem in that a cross current flows between the electric power converters. To design a control system more simply and commonalize the core of combination reactors, we reviewed a system construction method for parallel operation systems constructed with three electric power converters.

TOP-MOUNTED IN-CORE INSTRUMENTATION : CURRENT STATUS AND TECHNICAL ISSUES

  • KIM, SUNG JUN;KANG, TAE KYO;CHO, YEON HO;CHANG, SANG GYOON;LEE, DAE HEE;MAENG, CHEOL SOO
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.154-166
    • /
    • 2015
  • The in-core instrumentation measures core power distribution and coolant temperature in local regions of the core in pressurized water reactors. The installation types are distinguished by the designs of routing paths that exit either through reactor bottom mounted instrument nozzles or through reactor top mounted instrument nozzles. Although each type has unique advantages, it is generally known that top mounted design is more competitive with respect to emphasizing nuclear safety issues and ability to cope with severe accidents. The international nuclear vendors have provided various types of reactors with top mounted design. Nuclear power reactors in Korea, however, only have been designed to be applicable to the use of bottom mounted design, and it has been pointed out that the capabilities of Korean reactors against severe accidents should be further enhanced. The paper deals with technical issues on reactor internal and external design, in-core instrumentation, support assembly, sealing mechanism with nozzles, handling, and analytical issues in order to establish the ways of development.

A Study of the Construction Contracts and Delivery System for Nuclear Power Plant (원전건설 발주 및 계약체계에 대한 고찰)

  • Seo, Yong-Tok;Won, Seo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.233-235
    • /
    • 2012
  • Continually having growed up overseas construction market for new Nuclear Power Plant(NPP), the exports of Korean Reactor emerges as the key task of National Nuclear Business. The objective of this study is to strengthen the competitiveness of Korean Reactor through the improvement of Construction Project Contract & Delivery System for NPP. This study suggests the method for increasing Korean Reactor's competitiveness of exports by analyzing the business environment of foreign market and comparing Contract & Delivery System between domestic and foreign.

  • PDF

Risk Classification and Relational Database Schema in Overseas Power Plant Construction (해외 발전플랜트 리스크 분류체계 및 관계형 데이터베이스 구축 방안)

  • Kim, Min;Jung, Youngsoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.192-193
    • /
    • 2014
  • Due to the decreasing domestic construction market since 2007, Korean construction companies are expanding overseas market. As a result, the international market share by Korea has been continuously increased and achieved 65.2 billion dollars in 2013. Despite of such visible results, profitability concerns are constantly arising. It is pointed out that the low-priced bid competition between Korean construction companies and various unpredictable risks are the most crucial factors which aggravate the profitability in the overseas projects. From this point of view, predicting the risks in advance and controling them could be the most important tasks to improve the profitability. This research proposed 202 risk factors with a hierarchy and relational database schema for power plant construction, which is based on the 24 risk classifications in previous research (Kim & Jung 2013). Proposed risk classification and relational database schema could be utilized as the basic data in risk management system.

  • PDF

Analysis of Vibration Noise Spectrum in Motor-Driven Power Steering System (Motor-Driven Power Steering 시스템의 진동 소음 스펙트럼 분석)

  • Park, Han Young;Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2018
  • Unlike the hydraulic power steering (HPS) system, which operates by the high pressure of a fluid obtained from the engine power, the motor-driven power steering (MDPS) system uses an electric motor to steer the wheel without consuming engine power. To steer the wheel with an electric motor, a worm wheel and a worm gear rotating between the steering shaft and motor are required. Any imperfection during the construction of an MDPS system or in a composing part creates noise and vibration, which can be sensed by a driver. To solve the noise and vibration problems, each part must be designed to not resonate with other parts. In this work, we developed the measurement and analysis systems to obtain the noise and the vibration of an automobile MDPS system. A signal analyzer was equipped with a 96 kHz, 24-bit ADC and a 150 MHz digital signal processor. The predetermined threshold value of the vibration in the MDPS system was used to determine the pass/fail, and the results were displayed on the screen. Our system can be used in the fabrication line to swiftly determine any imperfections in the MDPS system construction.

REAL-TIME CORROSION CONTROL SYSTEM FOR CATHODIC PROTECTION OF BURIED PIPES FOR NUCLEAR POWER PLANT

  • Kim, Ki Tae;Kim, Hae Woong;Kim, Young Sik;Chang, Hyun Young;Lim, Bu Taek;Park, Heung Bae
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.).

CREATING TOTAL PROJECT MANAGEMENT SYSTEM ON APPLYING LEAN CONSTRUCTION

  • Sang-Chul Kim;Chan-Jeong Park
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.41-49
    • /
    • 2007
  • GS E&C had developed construction management system, PMS which is based on EVMS in 1997. Recently, TPMS has developed for effective construction management through applying daily schedule management and JIT on materials, labors, equipments focusing field work. TPMS realizes "Shielding" and "Make-Ready Process" which are the main concept of Lean construction. Through this system, it can manage and plan daily field work, support the field work related material, labor, and equipment planning, and minimizes the non-valuable process. This paper introduces the concept of TPMS, and through established system, it can lead the construction culture and raise the competitive power of construction industry

  • PDF

Design of Counter Shaft Automatic Transmission Gear Train Layout for Construction Vehicles (건설중장비용 카운터샤프트 자동변속기 기어열 레이아웃 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • Counter shaft transmission is a popular automatic transmission power train in construction vehicles such as wheel loader and forklift. The gear train layout of counter shaft transmission is a very basic and important development stage because it affects the most of components design including hydraulic system and shift control algorithm, etc. This paper presents a design methodology for the gear train layout from the analysis of power flow path and clutch hook-up of the existing counter shaft transmission that is adopted in commercialized construction vehicles. Also, independent constraints for the meshed gear ratios are derived in order to realize forward 4-speed and reverse 3-speed gear ratio. The layout design principle proposed here was applied to the new original counter shaft transmission that is underdevelopment.

  • PDF