• Title/Summary/Keyword: Power system analysis

Search Result 9,420, Processing Time 0.051 seconds

Design of a Hydraulic System for a Power Split type CVT (동력분기식 무단변속기의 유압구동부 설계)

  • 김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.168-173
    • /
    • 2004
  • This article describes the design of a hydraulic system for a power split type continuously variable transmission (CVT). The CVT considered here, is composed of planetary gears, clutches, and a torque converter which is mainly used for the realization of CVT function. Similar to automatic transmissions, the hydraulic system of CVT is designed for supplying hydraulic flows and pressures to each component of CVT, in order to activate the clutch engagements and torque converter operation, and to cool the drivetrain. By using the mathematical models of drivetrain, a simulation program was developed to investigate the power performance of CVT equipped vehicle and the operating conditions of each component of CVT. And the design parameters of the hydraulic system and clutches were calculated using the operating conditions and power requirements which obtained from the simulation results. Finally the hydraulic circuit design of prototyped valve body is presented based on the numerical results of this analysis.

Modification of an Analysis Algorithm for DC Power Systems Considering Scalable Topologies

  • Lee, Won-Poong;Choi, Jin-Young;Park, Young-Ho;Kim, Soo-Nam;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1852-1863
    • /
    • 2018
  • Direct current(DC) systems have recently attracted attention due to the increase in DC loads and distributed generations, such as renewable energy sources. Among these technologies, there has been much research into DC distribution systems or DC microgrids. Within this body of research, the main topics have been about optimum control and operation methods in terms of improving power efficiency. When DC systems are controlled and operated using power electronic devices such as converters, it is necessary to design and analyze them by considering the power electronics sections. For this reason, we propose a scalable DC system analysis algorithm, which considers various system configurations depending on the operating mode and location of the converter. The algorithm consists of power flow fault current calculations, and the results of the algorithm can be used for designing DC systems. The algorithm is implemented using MATLAB with defined input and output data. The verification of the algorithm is mainly performed using ETAP software, and the accuracy of the algorithm analysis can be confirmed through the results.

Critical Contingency Analysis for a Short-term System Operation Planning in Korea (우리나라 단기계통운용계획을 위한 가혹 상정고장 분석)

  • Lee, Jeobng Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.507-517
    • /
    • 2005
  • This paper presents the results of critical contingency analysis for the Korean power system which is performed to identify the impact of the critical contingencies on the Korean power system and set up a short term system operation planning for the purpose of preventing large scale blackout. The static and dynamic simulation is carried out for each critical contingency and the simulation results for each contingency are shown under the peak load condition for the year 2005, 2007 and 2010.

Performance Prediction of Wind Power Turbine by CFD Analysis (유동해석을 통한 수직축 풍력발전 터빈의 성능 예측)

  • Kim, Jong-Ho;Kim, Jong-Bong;Oh, Young-Lok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.423-429
    • /
    • 2013
  • The performance of a vertical-type wind power generator system was predicted by CFD analysis. In the analysis, the reaction torque was calculated for a given rotational speed of the blades. The blade torque of a wind power system was obtained for various rotational speeds, and the generation power was calculated using the obtained torque and the rotational speed. The optimum generator specification, therefore, could be decided using the relationship between the generated power and the rotational speeds. The effects of the number of blades and blade shapes on the generation power were also investigated. Finally, the analysis results were compared with the experimental results.

Development of a User-Friendly Application for Voltage Sag Analysis

  • Park Chang-Hyun;Jang Gil-Soo;Kim Chul-Hwan;Kim Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.145-152
    • /
    • 2006
  • This paper presents a windows application for voltage sag analysis and effective data visualization. The developed Voltage Sag Analysis Tool (VSAT) was designed by using the Object-Oriented Programming (OOP) concept and C++ programming language. The VSAT provides basic functions for voltage sag analysis such as power flow analysis, short circuit analysis and stochastic analysis. In particular, the VSAT provides effective data visualization through computer graphics and animation. Analysis results are expressed realistically and intuitively on geographical display. The Graphic User Interface (GUI) of VSAT was designed specifically for voltage sag analysis. In this paper, the development and implementation of VSAT is presented. In order to demonstrate the capabilities of VSAT, it is used to analyze the Jeju Island power system in South Korea.

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

Analysis on operation of Protective Equipment According to Application of SFCL in a Power Distribution System (분산전원이 도입된 배전계통에 초전도전류제한기 적용에 따른 보호기기 동작분석)

  • Lee, Yong-Seok;Jung, Sang-Hyun;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.67-68
    • /
    • 2011
  • This paper analysed a protective equipment in power distribution system linked distribution power system when a superconducting fault current limiter(SFCL) is installed. This paper focused on a recloser, because the recloser is a general protective equipment. When power distribution system linked distribution power system, a fault current is increased by adding fault current of distribution power system. The increased fault current makes many problems. But SFCLs are limiting fault current and help the protective equipment to operate normal process. We analysed the operation of protective equipment in power distribution system linked distribution power system with SFCLs.

  • PDF

Design and Analysis of a Power Control and Monitoring System for Buoy

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1068-1074
    • /
    • 2009
  • This paper describes a study for the buoy which should be operated by a stand-alone power system. The field of this study is related to a power system operated by two batteries which depends on the load power. The fluctuation of the voltages makes the life cycle of the battery shorten. The control algorithm has been proposed for reducing the voltage pulsation of the battery by operation strategy according to using purpose such as main or sub power supply system. The power system with battery is separated two parts and this has been proved through a simulation and a sea experiment. In order for the experiment to use a wireless monitoring system has been installed in buoy. This paper shows an excellent test result of wireless monitoring system for buoy.

Enhancement of Power System Dynamic Stability by Designing a New Model of the Power System

  • Fereidouni, Alireza;Vahidi, Behrooz
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.379-389
    • /
    • 2014
  • Low frequency oscillations (LFOs) are load angle oscillations that have a frequency between 0.1-2.0 Hz. Power system stabilizers (PSSs) are very effective controllers in improvement of the damping of LFOs. PSSs are designed by linearized models of the power system. This paper presents a new model of the power system that has the advantages of the Single Machine Infinite Bus (SMIB) system and the multi machine power system. This model is named a single machine normal-bus (SMNB). The equations that describe the proposed model have been linearized and a lead PSS has been designed. Then, particle swarm optimization technique (PSO) is employed to search for optimum PSS parameters. To analysis performance of PSS that has been designed based on the proposed model, a few tests have been implemented. The results show that designed PSS has an excellent capability in enhancing extremely the dynamic stability of power systems and also maintain coordination between PSSs.