• 제목/요약/키워드: Power switch

검색결과 1,751건 처리시간 0.022초

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

마이크로파 실내 배전용 저반사형 전력 분배 스위치 (Low Loss Power Dividing Switch for Indoor Microwave Power Distribution)

  • 최영규
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.90-94
    • /
    • 2013
  • A low loss power dividing switch in a indoor microwave power distribution system is proposed and designed with a various power dividing ratio. Switching characteristics are analyzed by use of the S-parameter of the switch. Newly proposed switch showed a very low return loss less than -30dB at the operating frequency of 2.45GHz. Three kinds of the switch in which we take out individually 1/2, 1/3 and 1/4 of the input power were fabricated, and measured the delivered, transmitted, and return loss power ratio. Simulated results showed that the lower power ratio is, the better accurate operating performance shows. This switch can switch the input power from 4.5% to 58% with the variance of 5% output power. The experimental results are in good agreement with the simulation within the return loss of 1%.

High Power 전달을 위한 새로운 Inverse Pinch Switch에 관한 연구 (A Study on New Inverse Pinch Switch for High Power Transfer)

  • 조국희;김영배
    • 조명전기설비학회논문지
    • /
    • 제20권10호
    • /
    • pp.120-125
    • /
    • 2006
  • Inverse pinch 스위치는 기존 스위치와 달리 전극의 손상을 줄이기 위해 나선형 전극형태로 제작하였다. 이 스위치는 전기적 트리거 펄스전압을 인가하여 동작시키며, 본 연구의 실험결과 전극간에 발생되는 아크확산 및 전류이동 때문에 전극수명이 길고, 대전류에도 견디기 때문에 펄스파워 시스템에 사용할 수 있다는 것을 확인하였다.

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

고전압 펄스 전원장치용 자기스위치 자동제어 방법 (Magnetic Switch Auto Control Method of the High-Voltage Pulse Power Supply)

  • 김수홍;이정흠;김병섭;권병기;최창호
    • 전력전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.366-373
    • /
    • 2011
  • 펄스파워에서 주로 사용되는 자기스위치는 반복률, 신뢰성, 소자수명에서 우수한 특성을 가진다. 그러나 자기스위치는 현재 대부분 수동으로 조작하여 스위칭 동작을 최적화하고 있으며, 부하가 변동될 경우 스위칭 상태를 자동으로 최적화할 수 없다. 본 논문은 CCPS(capacitor charging power supply)를 이용한 고압펄스 압축용 전원장치의 펄스압축을 위해 사용되는 자기스위치(magnetic switch)의 자동제어 방법을 제안하였다. 자기스위치를 부하변동에 따라 자동으로 제어함으로써 시스템의 에너지 효율을 최적화 할 수 있다. 제안된 방법은 실험을 통하여 검증하였다.

A New Hybird Control Scheme Using Active-Clamped Class-E Inverter with Induction Heating Jar for High Power Applications

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E(ACCE) inverter for the Induction Heating (IH) jar. The proposed hybrid control scheme has characteristics, which acts as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage of the switch. The proposedv hybrid control scheme also has advantage of conventional ACCE inverter such as Zero-Voltage-Switch(ZVS) of the main switch and the reduced switch voltage due to clamping cricuit. Moreover, the proposed hybrid control method using ACCE inverter has higher output power than convenional control scheme since ACCE inverter operates like class-E inverter at low input voltage condition. The principles of the proposed control are explained in detail and the validity of the proposed control scheme is verifed through the several interesting simulated and experimental results.

원자력 발전소 주 제어반의 제어 스위치 배치에 대한 인지적 수행도 평가 (A Cognitive Evaluation of Hand Switch Layouts in the Main Control Board of Nuclear Power Plants)

  • 변승남;이동훈
    • 대한산업공학회지
    • /
    • 제26권2호
    • /
    • pp.136-145
    • /
    • 2000
  • The objective of this study is to evaluate the human performance relating to the layouts of the two different hand switch types with two and three buttons in the nuclear power plants. Using a computer simulation, the cognitive performance for the hand switch layouts was measured on the basis of response and task completion times. Comparative analyses were performed with three different layouts representing the current switch arrangements in the Yonggwang nuclear plants 5 and 6 and Ulchin 3 and 4, respectively. Statistical analyses revealed that the performance of the two-buttoned switch layouts was found to be better than those of the three-buttoned switch. Furthermore, the superiority of the two-buttoned switch type is consistent regardless of various layout types. These results imply that the difference of the cognitive performance can be attributable to the switch types rather than to the switch layouts. Therefore, from the cognitive perspective, the two-buttoned switch type is recommended for future power nuclear plants.

  • PDF

Development of a Novel 30 kV Solid-state Switch for Damped Oscillating Voltage Testing System

  • Hou, Zhe;Li, Hongjie;Li, Jing;Ji, Shengchang;Huang, Chenxi
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.786-797
    • /
    • 2016
  • This paper describes the design and development of a novel semiconductor-based solid-state switch for damped oscillating voltage test system. The proposed switch is configured as two identical series-connected switch stacks, each of which comprising 10 series-connected IGBT function units. Each unit consists of one IGBT, a gate driver, and an auxiliary voltage sharing circuit. A single switch stack can block 20 kV-rated high voltage, and two stacks in series are proven applicable to 30 kV-rated high voltage. The turn-on speed of the switch is approximately 250 ns. A flyback topology-based power supply system with a front-end power factor correction is built for the drive circuit by loosely inductively coupling each unit with a ferrite core to the primary side of a power generator to obtain the advantages of galvanic isolation and compact size. After the simulation, measurement, and estimation of the parasitic effect on the gate driver, a prototype is assembled and tested under different operating regimes. Experimental results are presented to demonstrate the performance of the developed prototype.

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.