• Title/Summary/Keyword: Power steering

Search Result 390, Processing Time 0.039 seconds

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

The research on reducing aeroacoustic noise using by Pneumatic Auxiliary Unit (공압장치를 이용한 공력 소음 저감 연구)

  • CHUNG, kyoungseoun;CHO, hyeongjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.119-123
    • /
    • 2013
  • We conduct the research for reducing aeroacoustic noise occurred when a vehicle operates in high speed situation without modifying the structural configuration such as deforming A-pillar's side curvature. We introduce PAU (Pneumatic Auxiliary Unit) which is a sort of air duct using intake air through radiator grill. According to our research, we can reduce overall noise levels around the surface of HSM (Hyundai Simplified Model). When a vehicleruns 100km/s, area-weighted acoustic power level (AWAPL) indicates 33dB without PAU. However with PAU, coverall AWAPL is decreased to 29dB which means we can improvesilentness approximately 12% compared to ordinary case. Moreover we conduct similar implementation to steering situation especially about yawing. In varioussituations, -10, 0, 10 degree of yawing, we observe 10% reduction in the upstream region of HSM but little increase in downstream region. It seems that inlet air overlap turbulent kinetic energy to surrounding flow. Even though downstream region's noise is louder than upstream region, overall AWAPL is still lower than conventional condition. We also apply this scheme to the real vehicle situation, then we get reasonable output which can support our research outputs.

  • PDF

The Development and Application of Sound Quality Index for the Improving Sound Quality to Road Vehicle Power Window System (차량 윈도우 리프트 음질 향상을 위한 음질 지수 제작 및 개선에의 응용)

  • Kim, Seong-Hyeon;Park, Dong-Chul;Jo, Hyeon-Ho;Seong, Won-Chan;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.525-530
    • /
    • 2013
  • With the increasing the importance of emotional quality of vehicle, the sound quality of systems with electric motor components has become increasingly important. Electric motors are used for windows, seats, sun roof, mirrors, steering columns, windshield wiper, climate control blowers, etc. In this paper, a study was conducted to identify sound quality factors that contribute to customer's satisfaction and preference of the window lift system. Jury test for subjective evaluation was carried out and sound quality index was developed. Averaged sound pressure level and sharpness were significant factors when glass moves down. Also, maximum loudness at stop section and averaged loudness were significant factor when glass moves up. Noise source identification was carried out for the reduced the loudness and sharpness during glass transferred section and impulsive noise at stop section, Using the source identification result, several improvement points were applied. And finally, the degree of sound quality improvement was judged using sound quality index.

  • PDF

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

The Characteristic Analysis of a Single-Layer 12-slot 10-pole PM Synchronous Motor with Asymmetric Teeth Widths (단층권 12-Slot 10-Pole 영구자석 동기 전동기의 비대칭 치폭에 따른 특성 해석)

  • Kim, Tae-Heoung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1206-1209
    • /
    • 2018
  • Single-layer winding configuration in a 12-slot 10-pole Permanent Magnet Synchronous Motor (PMSM) has been adopting in electrical power steering (EPS) systems to get the high fault tolerance capability of the motor. However, the motor with single-layer winding has magnetic circuit saturations in the teeth, which deteriorates its performance. In this paper, we propose asymmetric teeth widths to get over the demerit, and analyze the effect of the teeth width ratio variations on the performances of the PMSM. As a result, we suggest the most valuable teeth width ratio for designing the PMSM with a single-layer winding configuration.

A Study on the Mold System of Bicycles Gear for Driving Safety (주행 안전을 위한 자전거 기어의 프레스금형에 관한 연구)

  • Jeong, Youn-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • Recently, bicycle has means of effective healthy transportation, and riding the bicycles is considered as popular recreational and sporting activities. Also, the saddle, steering system, driving device and braking device are researched briskly because of consumer's need for driving performance and comfort. Especially, the importance of a cassette responsible for transmission function by transmitting power to the drive shaft through the chain is very focused. The writer conducted structural analysis for the sprocket of each level using the ANSYS widely used for the analysis. Speed shifting performance was enhanced by minimization / simplification of shifting point through a sort of tooth profile of the cassette. By partitioning a clear value type and other shifting point, it has been modified to enable smooth speed-shifting. In addition, as titanium precision forming process, this study studied the molding technique by blanking and dies forging for mass production of the cassette. so it could be expected that the entire drive train would utilize that in the future. The stamping process capability for thin materials for the mass production of the sprockets is applicable to producing automobile parts, so lightweight component production is likely to be possible through that, for the safety of driving.

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.