• Title/Summary/Keyword: Power sharing control

Search Result 259, Processing Time 0.03 seconds

Wireless Paralleled Control Strategy of Three-phase Inverter Modules for Islanding Distributed Generation Systems

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.479-486
    • /
    • 2013
  • This paper presents a control strategy for distributed systems, which can be used in islanded microgrids. The control strategy is based on the droop method, which uses locally measured feedback to achieve load current sharing. Instead of the traditional droop method, an improved one is implemented. A virtual inductor in the synchronous frame for three-phase inverters is proposed to deal with the coupling of the frequency and the amplitude related to the active and reactive power. Compared with the traditional virtual inductor, the proposed virtual inductor is not affected by high frequency noises because it avoids differential calculations. A model is given for the distributed generation system, which is beneficial for the design of the droop coefficients and the value of the virtual inductor. The effectiveness of the proposed control strategy is verified by simulation and experiment results.

Wireless parallel operation of high voltage DC power supply using steady-state estimation (정상상태 판별을 이용한 고전압 직류전원장천의 Wireless 병렬 운전)

  • Son, H.S.;Baek, J.W.;Yoo, D.W.;Kim, J.M.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.208-211
    • /
    • 2003
  • This paper presents an improved droop method of the high voltage DC power supply which minimizes the voltage droop of a parallel-connected power supply. Conventionally, the droop method has been used to achieve a simple structure and no-interconnections among the power sources. However, it has a trade-off between output voltage regulation and load sharing accuracy. In this paper, the droop is minimized with a current and droop gain control using steady-stage estimation. The proposed method can achieve both high performance voltage regulation and load sharing. Two 10kV, 100mA parallel power modules were made and tested to verify the proposed current-sharing method.

  • PDF

Parallel Connected High Frequency AC Link Inverters Based on Full Digital Control

  • Sha, Deshang;Guo, Zhiqiang;Deng, Kai;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • This paper presents a full digital control strategy for parallel connected modular inverter systems. Each modular inverter is a high frequency (HF) AC link inverter which is composed of a HF inverter and a HF transformer followed by a cycloconverter. To achieve equal sharing of the load current and to suppress the circulating currents among the modules, a three-loop control strategy, consisting of a common output voltage regulation (OVR) loop, individual circulating current suppression (CCS) loops and individual inner current tracking (ICT) loops, is proposed. The ICT loops are implemented with predictive current control from which high precision current tracking can be obtained. The effectiveness of the proposed control strategy is verified by simulation and experimental results from parallel connected two full-bridge HF AC link inverter modules.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Digital Active Load Sharing Control of Paralleled Phase-Shifted Full-Bridge Converters

  • Seong, Hyun-Wook;Cho, Je-Hyung;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.129-130
    • /
    • 2010
  • For the high power demand and N+1 redundancy, this paper presents the digital load share (LS) controller design and the implementation of paralleled phase-shifted full-bridge converters (PSFBC) used in distributed power systems. By adopting the digital control strategy, separately used ICs for PSFBC and LS control functions in analog systems can be merged into a cost-effective digital controller. To compensate and stabilize both PSFBC and LS loops with the direct digital design approaches, small-signal model of the system is derived in discrete-time domain. The steady-state and dynamic load sharing performances are also investigated. Experimental results from two 1.2 kW paralleled PSFBC modules are shown to verify the proposed work.

  • PDF

Comarative Study on Current or Time Sharing Switches for High Efficiency DC/DC Converter (고효율 DC/DC 컨버터용 전류분할과 시분할 스위치 비교 연구)

  • Ko, Sung-Hun;Cho, Sung-Pil;Lee, Su-Won;Lee, Seong-Ryong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.68-75
    • /
    • 2012
  • This paper presents a comparative analysis of the parallel operation of different switches in a DC/DC converter. In high power applications, multi-switch PWM power conditioners may be preferred despite a higher component count, due to the absence of low frequency filters, reduced switching losses and fault tolerance. The paper demonstrates how current sharing (CSH) and time sharing (TSH) lead to the reduction of switching stress in the parallel operation of switches in any converter. The solutions proposed in this study can be applied on different scales to other power conditioners for DC/DC converter systems. Discussions of the concepts, hypotheses and computer simulations are verified by 1 kW experimental results.

A Novel Current Sharing Technique for Interleaved Boost Converter (Interleaved 부스트 컨버터의 새로운 전류 분배 기법)

  • Min, Byung-Sun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2007
  • This paper introduces a new current sharing technique to Interleaved Boost Converter (IBC) using carrier slope control. The IBC is able to boost the input voltage and operates at higher current levels and has various advantages over a single power module. However, how to balance the current each module is still important problem. To solve this problem, the proposed technique can distribute the power and load current equally based on master-slave current sharing method. Unlike a conventional approach, this technique can be extended even though the current stress of switching components at slave modules is significantly smaller than that of the master module. The simulation and the experimental results are presented to show the validity.

Adaptive Resource Allocation for Efficient Power Control Game in Wireless Networks (무선 네트워크에서 효율적인 전력 제어 게임을 위한 적응 자원 할당 기법)

  • Wang, Jin-Soo;Park, Jae-Cheol;Hwang, Sung-Hyun;Kim, Chang-Joo;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.221-228
    • /
    • 2009
  • We consider distributed resource allocation among the links in a wireless network to minimize the total transmit power of the network while meeting the target rate required by each link. The problem to be solved is how to change the amount of wireless resource allocated and the number of links sharing the resource according to the interference environment so that the following distributed power control game converges to a stable point. To provide a distributed method with less complexity and lower information exchange than the centralized optimal method, we define the resource sharing level among the links from which the size of resource allocated and the links sharing the resource are determined distributively. It is shown that the performance of the proposed method is better than that of the conventional methods, orthogonal resource allocation only and resource sharing only, as well as it approaches to that of the optimal method.

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.