• Title/Summary/Keyword: Power series

Search Result 2,993, Processing Time 0.031 seconds

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

A Study on Current Harmonics Reduction and Unbalanced Source Voltage Compensation Using Series Active Power Filter and Parallel Passive Filter (직렬 능동전력필터와 병렬 수동필터를 이용한 고조파 전류 저감 및 불평형 전원 전압 보상에 관한 연구)

  • Oh, Jae-Hoon;Ko, Su-Hyun;Han, Yoon-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.196-199
    • /
    • 2001
  • This paper deals with current harmonics and unbalanced source voltages compensation using combined filter system. Filter system consists of a series active filter and parallel passive filters. Passive filters were a traditional method to compensate current harmonics, so those were installed in power system widely. The active filter can be a substitution to improve filtering characteristics and complement drawbacks of the passive filter. The combined system of the active power filter and passive filter can has a better compensation performances and economical goods. The series type active power filter injects compensation voltage into power system by transformers. It's compensation principle is able to applicate for voltage compensation. A new control algorithm for series active filter to compensate current harmonics and unbalanced source voltages is proposed. In the proposed algorithm, a compensation voltage for harmonic reduction is calculated directly by instantaneous reactive power theory, and a compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. By experiments, we show validity of proposed compensation method.

  • PDF

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

Single-Power-Conversion Series-Resonant AC-DC Converter with High Efficiency (고효율을 갖는 단일 전력변환 직렬 공진형 AC-DC 컨버터)

  • Jeong, Seo-Gwang;Cha, Woo-Jun;Lee, Sung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • In this study, a single-power-conversion series-resonant ac-dc converter with high efficiency and high power factor is proposed. The proposed ac-dc converter consists of single-ended primary-inductor converter with an active-clamp circuit and a voltage doubler with series-resonant circuit. The active-clamp circuit clamps the surge voltage and provides zero-voltage switching of the main switch. The series-resonant circuit consists of leakage inductance $L_{lk}$ of the transformer and resonant capacitors $ C_{r1}$ and $ C_{r2}$. This circuit also provides zero-current switching of output diodes $D_1$ and $D_2$. Thus, the switching loss of switches and reverse-recovery loss of output diodes are considerably reduced. The proposed ac-dc converter also achieves high power factor using the proposed control algorithm without the addition of a power factor correction circuit and a dc-link electrolytic capacitor. A detailed theoretical analysis and the experimental results for a 1kW prototype are discussed.

A Study on Series Active Power Filter Compensating Unbalanced Source Voltage in 3phase-3wire system (불평형 전원전압을 보상하는 3상3선식 직렬형 능동전력필터에 관한 연구)

  • 오재훈;한윤석;김영석;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.386-393
    • /
    • 2001
  • A series active power filter compensating current harmonics and unbalanced source voltages in a 3phase-3wire power system is presented. The system is composed of series active power filter and shunt passive filters that are tuned at 5th and 7th harmonics. The proposed series active power filter improves harmonic compensation characteristics of the shunt passive filters, reduces source side harmonic currents and compensates the unbalanced source voltages. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by a performance function, and compensation voltage for the unbalanced source voltage is calculated based on the synchronous reference frame. Some results obtained from the experimental model using the proposed method are Presented to demonstrate and confirm its validity.

  • PDF

Single Power-conversion AC-DC Converter with High Power Factor (고역률을 갖는 단일 전력변환 AC-DC 컨버터)

  • Cho, Yong-Won;Park, Chun-Yoon;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a single power-conversion ac-dc converter with a dc-link capacitor-less and high power factor. The proposed converter is derived by integrating a full-bridge diode rectifier and a series-resonant active-clamp dc-dc converter. To obtain a high power factor without a power factor correction circuit, this paper proposes a suitable control algorithm for the proposed converter. The proposed converter provides single power-conversion by using the proposed control algorithm for both power factor correction and output control. Also, the active-clamp circuit clamps the surge voltage of switches and recycles the energy stored in the leakage inductance of the transformer. Moreover, it provides zero-voltage turn-on switching of the switches. Also, a series-resonant circuit of the output-voltage doubler removes the reverse-recovery problem of the output diodes. The proposed converter provides maximum power factor of 0.995 and maximum efficiency of 95.1% at the full-load. The operation principle of the converter is analyzed and verified. Experimental results for a 400W ac-dc converter at a constant switching frequency of 50kHz are obtained to show the performance of the proposed converter.

An Improved High Efficiency Resonant Converter for the Contactless Power Supply with a Low Coupling Transformer (낮은 커플링 변압기를 갖는 비접촉 전원의 개선된 고효율 공진 컨버터)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Comparing with the conventional transformer without the air gap, a contactless transformer with the large air gap between the long primary winding and the secondary winding has increased leakage inductance and reduced magnetizing inductance. For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system with the large air gap and the increased leakage inductance of the contactless transformer However, the high frequency series resonant converter has the disadvantages of the low efficiency and high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, the characteristics of the high efficiency and unit voltage gain are revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation based on the theoretical analysis and the 5kW experimental prototype.

Performance Characteristics of Thermoelectric Generator Modules For Parallel and Serial Electrical Circuits (전기회로 구성 방법에 따른 열전발전 모듈 성능 특성)

  • Kim, Yun-Ho;Kim, Myung-Kee;Kim, Seo-Young;Rhee, Gwang-Hoon;Um, Suk-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.259-267
    • /
    • 2010
  • An experiment has been performed in order to investigate the characteristics of multiple thermoelectric modules (TEMs) with electrical circuits. The open circuit voltage of TEM connected parallel circuit is equal to the sum of individual TEMs. In contrast, the open circuit voltage is equal to the average of that individual TEM for a series circuit. The power output and conversion efficiency of TEM for both parallel and series circuits increase as the operating temperature conditions for individual TEMs becomes identical. Comparing parallel with series circuits, the power generation performance is more excellent for series circuit than parallel circuit. This result is attributed to the power loss from the TEM with better power generation performance.

Limit Resolution in the Decoupled UPFC Model for Power Flow (조류계산을 위한 분리된 UPFC 모형에서의 제한값 해결)

  • Kim, Tae-Hyeon;Seo, Jang-Cheol;Im, Jeong-Uk;Mun, Seung-Il;Park, Jong-Geun;Han, Byeon-Mun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.824-831
    • /
    • 1999
  • This paper presents new methods to resolve the important limits in the decoupled UPFC model for power flow, by which conventional power flow program can be performed with addition of two buses per one UPFC. In order to operate UPFC to the desired value, the series voltage and shunt current of UPFC should be computed. So a method of calculating these by simple equations after power flow is derived. However, the calculated magnitude of series voltage and/or shunt current of UPFC may not be allowed because of the UPFC limit \ulcorner to the ratings of inverters. In this case, the active power and the reactive power (or the voltage magnitude) of UPFC buses should be revised to resolve the limit. This paper proposes the Newton Raphson method to resolve these limits. Particularly, when resolving the series voltage magnitude, three strategies are proposed according to the priority of the active power and the reactive power (or the voltage magnitude).

  • PDF

Enhancement of Interface Flow Limit using Static Synchronous Series Compensators

  • Kim Seul-Ki;Song Hwa-Chang;Lee Byoung-Jun;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.313-319
    • /
    • 2006
  • This paper addresses improving the voltage stability limit of interface flow between two different regions in an electric power system using the Static Synchronous Series Compensator (SSSC). The paper presents a power flow analysis model of a SSSC, which is obtained from the injection model of a series voltage source inverter by adding the condition that the SSSC injection voltage is in quadrature with the current of the SSSC-installed transmission line. This model is implemented into the modified continuation power flow (MCPF) to investigate the effect of SSSCs on the interface flow. A methodology for determining the interface flow margin is simply briefed. As a case study, a 771-bus actual system is used to verify that SSSCs enhance the voltage stability limit of interface flow.