• Title/Summary/Keyword: Power parameters

Search Result 5,773, Processing Time 0.033 seconds

Changes of Functional Compounds in, and Texture Characteristics of, Apples, during Post-Irradiation Storage at Different Temperatures (감마선 조사와 저장온도에 따른 사과의 기능성 성분 및 조직감 변화)

  • Yun, Hye-Jeong;Lim, Sang-Yong;Hur, Jung-Mu;Jeong, Jin-Woo;Yang, Soo-Hyung;Kim, Dong-Ho
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • The effects of gamma irradiation on the physiochemical and physical characteristics of apples were investigated during post-irradiation storage at $4^{\circ}C\;and\;25^{\circ}C$. The contents of total and reducing sugars were analyzed and the results indicated that apples receiving 1 kGy of gamma irradiation did not show significant differences in sugar contents compared to non-irradiated controls. Important physiological characteristics were evaluated by measurement of total phenolic content and total flavonoid content, reducing power, and radical scavenging ability, and the results indicated that gamma irradiation at a dose of 1 kGy did not affect physiological activities. Changes in physical parameters such as weight loss, strength, cohesiveness and hardness, during post-irradiation storage, were temperature-dependent, whether the apples were irradiated or not The color and sensory acceptance of the apples were not affected by irradiation during cold storage. However, minor deterioration in color quality and sensory acceptance of irradiated apples was noted under ambient temperature storage. We conclude that gamma irradiation(1 kGy) does not affect apple nutritional content stability, functional properties, or physical characteristics, especially upon cold storage after radiation treatment.

A study on the oxide etching using multi-dipole type magnetically enhanced inductively coupled plasmas (자장강화된 유도결합형 플라즈마를 이용한 산화막 식각에 대한 연구)

  • 안경준;김현수;우형철;유지범;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.403-409
    • /
    • 1998
  • In this study, the effects of multi-dipole type of magnets on the characteristics of the inductively coupled plasmas and $SiO_2$ etch properties were investigated. As the magnets, 4 pairs of permanent magnets were used and, to etch $SiO_2, C_2F_6, CHF_3, C_4F_8, H_2$, and their combinations were used. The characteristics of the magnetized inductively coupled plasmas were investigated using a Langmuir probe and an optical emission spectrometer, and $SiO_2$ etch rates and the etch selectivity over photoresist were measured using a stylus profilometer. The use of multi-dipole magnets increased the uniformity of the ion density over the substrate location even though no significant increase of ion density was observed with the magnets. The use of the magnets also increased the electron temperature and radical densities while reducing the plasma potential. When $SiO_2$ was etched using the fluorocarbon gases, the significant increase of $SiO_2$ etch rates and also the increase of etch uniformity over the substrate were obtained using the magnets. In case of gas combinations with hydrogen, $C_4F_8/H_2$ showed the highest etch rates and etch selectivities over photoresist among the gas combinations with hydrogen used in the experiment. By optimizing process parameters at 1000 Watts of inductive power with the magnets, the highest $SiO_2$ etch rate of 8000 $\AA$/min could be obtained for 50% $C_4F_8/50% H_2$.

  • PDF

Total Simulation for the Noise Prediction of Motor Driving System in EV/HEV System (EV/HEV용 모터 구동 시스템의 Noise 예측을 위한 통합 시뮬레이션에 대한 연구)

  • Gwon, O-Hyun;Lee, Jae Joong;Kim, Kwang-Ho;Ahn, Ji-Hyun;Kweon, Hyuck-Su;Kim, Mi-Ro;Jung, Sang-Yong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.710-721
    • /
    • 2013
  • The noise prediction of motor driving system is one of the most important parts in EV/HEV, as the number of power electronic devices increases. This paper describes the mechanism of noise making process and proposes a simulation model of motor driving system for the prediction of the conducted noise. Theoretical calculations and model based simulations were carried out. DOD-dependent-battery parameters were extracted by AC analysis, and an inverter model including dynamic diode was used. Furthermore, 2-D EM tool was used for the motor modeling and was combined with the circuit models of battery and inverter. The simulated voltages, currents and spectrums in the motor driving system showed qualitatively meaningful results, suggesting the validness of the suggested modeling methods.

Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 정상유동 특성)

  • Song, Ki-Won;Kim, Tae-Hoon;Chang, Gap-Shik;An, Seung-Kook;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.

  • PDF

Characterization of CdSe Thin Film Using Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 제작한 CdSe 박막의 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 1993
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD) method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_{2}$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_{o}$ and $c_{o}$ were $4.302{\AA}$ and $7.014{\AA}$, respectively. Its grain size was about $0.3{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33 K and 200 K, and by polar optical scattering at temperature range of 200 K and 293 K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Development of Ocean Data Buoy and Real-Time Monitoring Technology (종합관측부이 개발 및 실시간 관측기술)

  • 심재설;이동영;박우선;박광순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-67
    • /
    • 1999
  • It is desired to use a domestically manufactured ocean data buoy for the long-term operational ocean monitoring. The ocean data buoy manufacturing technology was introduced through the research cooperation with the Qingkong University of Taiwan. The introduced ocean data buoy system was further expanded and improved for more efficient application for the marine environmental monitoring in Korea. The size of the ocean data buoy is 2.5 m in diameter, which is smaller compared to the NOAA's 3.0 m discus buoy to allow easy land transportation and ocean deployment as well. From the dynamic response test of the buoy carried out numerically, it was shown that the measurement of waves with period greater than 4 seconds is acceptable. The measurement and control system of the data buoy were improved to increase the number of measuring parameters, to reduce power consumption and to enhance better data analysis and management. Each component of the improved data buoy system was described in detail in this paper. Water quality sensors of water temperature, salinity, DO, pH and turbidity were added to the system in addition to the marine meteorological sensors of wind speed and direction, air temperature, humidity, air pressure and wave. Inmarsat satellite communication system is used for the real-time data telemetry from the buoy deployed offshore. A field performance test of the improved and domestically manufactured buoy was carried out for a month at the open sea off Pohang together with DatawelI's Wave-rider buoy to compare the wave data. The results of the test were satisfactory.

  • PDF

The Fundamental Studies and Development of Modified Electrothermal Vaporization Hollow Cathode Glow Discharge Cell (개선된 전열증기화 속빈음극관 글로우 방전셀의 기초연구 및 개발)

  • Lee, Seong-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Kim, Kyu-Whan;Woo, Jeong-Su;Lee, Chang-Su;Kang, Dong-Hyun;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • The electrothermal vaporization (ETV) hollow cathode glow discharge atomic emission spectrometer for analysis of liquid sample has been developed and characterized. This system has improved the sample introduction method of electrothermal vaporization and the hollow cathode glow discharge. The sample introduction method was possible to provide high analyte transport efficiency to the plasma by helix coil made of tungsten material. In addition, small volume samples (<$30{\mu}{\ell}$) could be used. The system has glow discharge cell with special design for improvement of precision. The effect of discharge parameters such as discharge power, gas flow rate has been studied to find optimum condition. The emitted light was effectively carried into detector by fiber optic cable in UV region. The calibration curve of Pb, Cd were obtained with 3 samples.

A Study on 3[kW] PMA-RSG Optimal Design for Mobile Power Supply (이동형 전원장치용 3[kW] PMA-RSG의 최적 설계에 대한 연구)

  • Baik, Jei-Hoon;Toliyat, Hamid A.;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, an analytical model using equivalent magnetic circuits for the PMA-SynRG is presented. The lumped parameter model (LPM) is developed from machine geometry, stator winding and machine operating specifications. By the LPM, magnetic saturation of rotor bridges is incorporated into model and it provides effective means of predicting machine performance for a given machine geometry. The LPM is not as accurate as finite element analysis but the equivalent magnetic circuits provide fast means of analyzing electromagnetic characteristics of PMa-SynRG. It is the main advantage to find the initial design and optimum design. The initial design of PMa_RSG is performed by LPM model and FEM analysis, and the final PMA-RSG design is optimized and identified by FEM analysis considering actual machine design. The linear LPM and the nonlinear LPM are programmed using MATLAB and all of machine parameters are calculated very quickly. To verify justification of the proposed design of PMa-RSM, back-EMF is measured.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model (단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석)

  • Cho, Sang-Ho;Nam, Hyung-Sik;Ryu, Ki-Jin;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.