• Title/Summary/Keyword: Power pack

Search Result 205, Processing Time 0.031 seconds

A Study on the Dynamic Stability of a Power Pack for Heavy Construction Equipments (토목공사용 파워팩의 동적 안정성에 관한 연구)

  • Kim, Dong-Il;Kim, Chae-Sil;Lee, Sang-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.134-138
    • /
    • 2014
  • Power packs can change energy to hydraulic energy generated by an engine as a tool for use with civil engineering construction equipment. This paper determines which type of power pack meets the standards of construction machinery. A power pack was formulated as a three-dimensional model by using the software CATIA. A modal analysis was conducted using ANSYS Workbench, and the resonance was checked. Next, a harmonic analysis was conducted. The analytical results show that the dynamic stability of the power pack is assured.

Parameter Design and Power Flow Control of Energy Recovery Power Accumulator Battery Pack Testing System

  • Bo, Long;Chong, Kil To
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.787-798
    • /
    • 2013
  • This paper proposes a special power circuit topology and its corresponding control strategy for an energy recovery power accumulator battery pack testing system (PABPTS), which is particularly used in electric vehicles. Firstly, operation principle and related parameter design for the system are illustrated. Secondly, control strategy of the composite power converter for PABPTS is analyzed in detail. The improved scheme includes a high accuracy charge and discharge current closed loop. active power reference for the grid-side inverter is provided by the result of multiplication between battery pack terminal voltage and test current. Simulation and experimental results demonstrate that the proposed scheme could not only satisfy the requirements for PABPTS with wide-range current test, but also could recover the discharging energy to the power grid with high efficiency.

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

Development of BMS applying to LPB Pack in Bimodal Tram (바이모달트램용 LPB팩에 적용될 Battery Management System 개발)

  • Lee, Kang-Won;Chang, Se-Ky;Nam, Jong-Ha;Kang, Duk-Ha;Bae, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.477-477
    • /
    • 2009
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

  • PDF

Friction Characteristics of Piston Ring Pack with Consideration of Mixed Lubrication: Parametric Investigation

  • Kim, Ji-Young;Kim, Jee-Woon;Cho, Myung-Rae;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.468-475
    • /
    • 2002
  • This paper reports on the friction characteristics of a piston ring pack with consideration of mixed lubrication. The analytical model is presented by using the average flow antral asperity contact model. The effect of operating condition, and design parameters on the MOFT, maximum friction force, and mean frictional power loss are investigated. Piston ring prick shows mixed and hydrodynamic lubrication characteristics. From the predicted results, it was fand that the ring tension and height of surface roughness have great influence on the frictional power losses in a ring pack. Especially, ring tension is a dominant factor for the reduction of friction loss and maintenance of oil film thickness.

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.

Inner Temperature Distribution by Two Appearances of Series-Cell Configured Battery Pack using Cylindrical Cells (원통형셀 기반 직렬배터리팩의 외형(정사/직사면체) 차이에 의한 내부 열분포 기초해석)

  • Han, Dong-Ho;Lee, Pyeng-Yeon;Park, Jin-Hyeng;Kim, Jonghoon;Yoo, Kisoo;Cho, In-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • Given that lithium-ion batteries are expected to be used as power sources for electric and hybrid vehicles, thermodynamics experimentation and prediction based on experimental data were performed. Thermal, electrochemical, and electrochemical/electrical-thermal models were used for accurate battery modeling. Various applications of different battery packs were demonstrated, and thermal analysis was performed using the same experimental conditions for square and rectangular battery packs. Accurate thermal analysis for a single cell should be prioritized to determine the thermal behavior of the battery pack. The energy balance equation, which contains heat generation and heat transfer factors, defines the thermal behavior of the battery pack. By comparing battery packs of different shapes tested under the same condition, this study revealed that the rectangular battery pack is superior to the square battery pack in terms of the maximum temperature of inner cells and temperature variation between cells.

Design and Implementation of 150W Portable Fuel Cell Power Pack (150W급 휴대용 연료전지 Power Pack 설계 및 제작)

  • Woo, Dong-Gyun;Joo, Dong-Myoung;Kim, Yun-Sung;Oh, Jae-Gi;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.553-561
    • /
    • 2012
  • Existing energy sources convert chemical energy into mechanical energy, while fuel cell directly generates electricity through an electrochemical reaction between hydrogen and oxygen. Therefore, it has a lot of strong points such as high efficiency, zero emission, and etc. In addition, with the development of hydrogen preservation technique, some companies have been researching and releasing portable fuel cell power packs for specific applications like military equipment, automobile, and so on. However, there are some drawbacks to the fuel cell, high cost and slow dynamic response. In order to compensate these weak points, auxiliary energy storages could be applied to the fuel cell system. In this paper, the optimum structure for a 150W portable fuel cell power pack with a battery pack is selected considering the specification of the system, and the design process of main parts is described in detail. Here, main objectives are compact size, simple control, high efficiency, and low cost. Then, an automatic mode change algorithm, which converts the operating mode depending on the states of fuel cell stack, battery pack, and load, is introduced. Finally, performance of the designed prototype using the automatic mode change control is verified through experiments.

The Analysis of High Frequency Signal for 7tonf-class Power Pack System of KSLV-II (한국형발사체 7톤 파워팩 시스템 고주파 신호 분석)

  • So, Younseok;Yi, Seungjae;Lee, Kwangjin;Kim, Seunghan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.96-102
    • /
    • 2016
  • The 7tonf-class power pack test at turbopump test facility in Naro space center was performed for confirmations of starting/running/ending operation characteristics before 7tonf rocket engine hot-firing test. The dynamic pressure mounted on a combustion chamber of gas generator is measured under 0.2 bar which does not conditioned to the unstable combustion. The analysis results of RPM and acceleration sensors mounted on the turbopump, the power pack test was performed to the estimated RPM with the stable combustion.