• Title/Summary/Keyword: Power network

Search Result 5,967, Processing Time 0.042 seconds

A Methodology for the construction of ATM Network to support the Power Utility Services (전력 통신서비스를 위한 ATM 통신망 구축방법)

  • Yoon, Il-Hwan;Yoo, Jae-Tack;Kim, Il-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.961-963
    • /
    • 1998
  • Power telecommunication networks, being used to support the operation and management of power utility services, exhibits different characteristics from those of public domain networks. KEPCO is planning to evolve its own power network infrastructure to exploit ATM (Asynchronous Transfer Mode) technology. The ATM network to be developed needs to effectively utilize existing network of KEPCO and to fully support new and emerging power-utility-services. This paper summarizes the features of power communication services and the characteristics of Power telecommunication networks, and reports our evolution methodology for KEPCO network.

  • PDF

DRA: Duplication Resolver Algorithm for Power Conservation Utilizing Software Defined Network (SDN)

  • Masoud, Mohammad;Jaradat, Yousef;Jannoud, Ismael;Huang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3351-3369
    • /
    • 2017
  • In recent years, datacenters, network devices and computers have proliferated. The power consumed by information and communication technology (ICT) devices has inflated in an extraordinary manner. Green communication has emerged as a new approach to reduce and optimize power consumption in ICT sector. Many methods and protocols have been proposed and implemented to achieve green communication. Nevertheless, the increase of power consumption remains a problem. In this work, we attempt to reduce and optimize power consumption of network devices in datacenters environment utilizing software defined network (SDN) paradigm. To gain more insight of the power consumption requirements of network switches, a power measurement system is constructed to measure power consumption levels of network devices. Subsequently, we propose a duplication resolver algorithm (DRA) to power off/on switches reactively. DRA algorithm reduces the required time by switches to construct their flow tables after rebooting. To this end, DRA-based external circuit has been constructed utilizing Ethernet module and an Arduino kit to control power supplies of network devices. To facilitate our work, a testbed has been constructed utilizing Ryu SDN controller, HP2920-24G switches and Arduino kits. Our results show that DRA algorithm can reduce both the power usage and start-up time delay of network switches after failures.

EMTP simulation of 345kv Substation in large network using newly developed Thevenin equivalent network (345kv 미금 변전소 외부 계통의 등가축약 기법을 이용한 EMTP 모델링에 관한 연구)

  • Jeong, Ki-Seok;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.244-246
    • /
    • 2008
  • EMTP-RV is the very powerful program to analyze the dynamic operation of the power system. To use this package in the large complex power system, it is very important to simplify the power system to simple equivalent network. In our study the 100 MVA STATCOM is placed at 345kV "MIGUM" which is the one of the 345kV substations of the Korean Electric Power System that is consist of more than 1000 bus. MIGUM substation is connected with 7 separated transmission lines to main Korean Electric power system. We developed a new method to simplify the network except the substation that we want to analysis. The power system outside the 345kV substation is modeled into the equivalent network. The loop network outside the substation can be modeled to simplified Thevenin equivalent network. The proposed method is applied to IEEE-14 Reliability Test System and the results shows the effectiveness of the method.

  • PDF

Smart Grid (긴급제언 - 스마트 그리드)

  • Chung, Choon-Byeong
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.6
    • /
    • pp.36-41
    • /
    • 2009
  • Smart Grid is grafting IT(information technology) techniques on existing electric power network, supplier and the consumer to do real-time exchange of information lead to both direction and energy efficiency optimization, it is a next potential electric power network method. Because of applying various distributed electric power sources, the electric power network system will follow in size and it is dispersive and it will operate independently, and it become the intelligent electric power network, which in consumer demand reacts at real-time, because of using various sensors. In this article explain concept, features, and contemporary background of Smart Grid, and describe improve reliability of the electric power quality.

  • PDF

Method for Power control of Wired and Wireless linkage Sensor Network for Low-power Wireless network (저전력 무선 네트워크를 위한 유무선 연동 센서 네트워크의 전력 제어 방법)

  • Lee, Kyung-Sook;Kim, Hyun-Deok
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, using a new low-power consumption method for ZigBee device, which consume low-power using an output power control algorithm through RSSI monitoring as interlocking wireless network using ZigBee which has advantages of a low-power consumption, a low-cost, a compatibility and a draft international standardization enacted by IEEE and ZigBee Alliance, with wired network using built coaxial cable to overcome the disadvantage of the existing wireless sensor network, is proposed. Effectiveness of the output power control algorithm through RSSI monitoring has been verified by experimentation for more optimized low-power consumption.

Development of a Multiple SMPS System Controlling Variable Load Based on Wireless Network

  • Ko, Junho;Park, Chul-Won;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1221-1226
    • /
    • 2015
  • This paper proposes a multiple switch mode power supply (SMPS) system based on the wireless network which controls variable load. The system enables power supply of up to 600W using 200W SMPS as a unit module and provides a controlling function of output power based on variable load and a monitoring function based on wireless network. The controlling function for output power measures the variation of output power and facilitates efficient power supply by controlling output power based on the measured variation value. The monitoring function guarantees a stable power supply by observing the multiple SMPS system in real time via wireless network. The performance of the proposed system was examined by various experiments. In addition, it was verified through standardized test of Korea Testing Certification. The results were given and discussed.

Adaptive Power allocation inenergy-constrained wireless ad-hoc networks (전력 제한된 무선 애드혹 네트워크에서의 적응적 전력할당기법)

  • Gao, Xiang;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.336-342
    • /
    • 2008
  • We proposed a simple power allocation scheme to maximize network lifetime for "amplify and forward(AF)" and "decode and forward(DF)". To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at destination node. In this paper, we calculate power allocation in model of AF and DF. We evaluated the proposed power allocation scheme using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal power allocation.

Development of AMI NMS (Network Management System) using SNMP for Network Monitoring of Meter Reading Devices (원격검침 설비의 네트워크 상태감시를 위한 SNMP 기반의 저압 AMI 망관리시스템 개발)

  • Kim, Young-Il;Park, So-Jeong;Kim, Young-Jun;Jung, Nam-Jun;Choi, Moon-Suk;Park, Byung-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.259-268
    • /
    • 2016
  • KEPCO installed AMI (Advanced Metering Infrastructure) metering system for low-voltage customers from 2008. AMI metering system of KEPCO has operated 2.55 million customers and will plan to operate 22 million customers until 2020. KEPCO developed AMI NMS (Network Management System) to operate the meter reading network efficiently. NMS monitors the network status of DCUs (Data Concentration Unit) and modems. NMS provides functionalities of data collection and analysis. It collects property data of network device, network topology information, communication performance information, fault information, and etc. It analyzes collected data and controls network devices by remote access. AMI NMS collects about 370 MIBs (Mangement Information Bases) using SNMP (Simple Network Management Protocol). This paper introduces main functionalities, designed context, and implemented service screen.

Verification of failover effects from distributed control system communication networks in digitalized nuclear power plants

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil;Lim, Hee-Taek
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.989-995
    • /
    • 2017
  • Distributed Control System (DCS) communication networks, which use Fast Ethernet with redundant networks for the transmission of information, have been installed in digitalized nuclear power plants. Normally, failover tests are performed to verify the reliability of redundant networks during design and manufacturing phases; however, systematic integrity tests of DCS networks cannot be fully performed during these phases because all relevant equipment is not installed completely during these two phases. In additions, practical verification tests are insufficient, and there is a need to test the actual failover function of DCS redundant networks in the target environment. The purpose of this study is to verify that the failover functions works correctly in certain abnormal conditions during installation and commissioning phase and identify the influence of network failover on the entire DCS. To quantify the effects of network failover in the DCS, the packets (Protocol Data Units) must be collected and resource usage of the system has to be monitored and analyzed. This study introduces the use of a new methodology for verification of DCS network failover during the installation and commissioning phases. This study is expected to provide insight into verification methodology and the failover effects from DCS redundant networks. It also provides test results of network performance from DCS network failover in digitalized domestic nuclear power plants (NPPs).

Optimal design of the network service for the Electric Power Automation IT Infra. (전력자동화 통신망 인프라를 이용한 네트워크 서비스 최적 구축 방안)

  • Park, Soo-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.730-731
    • /
    • 2011
  • EPA(Electric Power Automation IT Infra) is a System for Protective Information Transmitter & Receiver and network service. KEPCO(Korea Electric Power Corporation) is building up a high-speed communication network to accept Smart Grid Infra expansion and various terminal communication media characteristic. Recently, MSPP(Multi Service Provisioning Platform) System is establishted to network service. But there are many considerations for optimal design of network service for the Electric Power Automation IT Infra.

  • PDF