• Title/Summary/Keyword: Power modeling

Search Result 3,049, Processing Time 0.03 seconds

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

Atmospheric Dispersion Characteristics of Radioactive Materials according to the Local Weather and Emission Conditions

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Background: This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Materials and Methods: Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the $^{137}Cs$, using the WRF/HYSPLIT modeling system. Results and Discussion: The highest mean concentration of $^{137}Cs$ occurred at 0900 LST under the ME4_1 (main wind direction: SSW, daily average wind speed: $2.8ms^{-1}$), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, $4.1ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4_4 (S, $2.7ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 0300 LST because $^{137}Cs$ stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1_3 and EM2_3 that had the maximum total number of particles showed the widest dispersion of $^{137}Cs$, while its highest mean concentration was estimated under the EM1_1 considering the relatively narrow dispersion and high emission rate. Conclusion: This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of $^{137}Cs$ concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where $^{137}Cs$ is dispersed, the emission rate of $^{137}Cs$, and the number of emitted particles.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

A Empirical Study of Leadership style Influencing on Organizational Effectiveness of University-Industry Collaboration Foundation (산학협력단의 조직 효과성에 영향을 미치는 산학협력단장의 리더십 유형에 관한 실증연구)

  • Shin, Joon-Seok;Won, Sang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7424-7432
    • /
    • 2015
  • The purpose of this study is to find out the effectiveness of four leadership types to employees that affected by leaders of the University-Industry Collaboration Foundation(UICF). This study has analyzed through structural equation modeling(SEM) using AMOS after surveyed for 178 employees out of 404 employees about IUCF of 35 universities in nationwide. In order to examine the power of influence that leadership types of leader how to improve organizational effectiveness on IUCF, leadership types were classified with transformational leadership(TFL), transactional leadership(TAL), coaching leadership(CL) and servant leadership(SL) as independent variables and job satisfaction(JS), organizational commitment(OC) and self efficacy(SE) as a dependent variables. The results are following; first, job satisfaction and organizational commitment were affected by transformational leadership, transactional leadership and coaching leadership. second, self-efficacy was not statistically significant for power of influence that affected by transactional leadership and servant leadership. third, the employees of UICF in connection with self-efficacy were only weak affected by transformational leadership and coaching leadership. fourth, job satisfaction, organizational commitment and self-efficacy as the three dependant variables were not utterly influenced by servant leadership.

A study on the Optimal Configuration Algorithm for Modeling and Improving the Performance of PV module (태양광모듈의 모델링 및 성능향상을 위한 최적구성방안에 관한 연구)

  • Jeong, Jong-Yun;Choi, Sung-Sik;Choi, Hong-Yeol;Ryu, Sang-Won;Lee, In-Cheol;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.723-730
    • /
    • 2016
  • Solar cells in a PV module are connected in series and parallel to produce a higher voltage and current. The PV module has performance characteristics depending on solar radiation and temperature. In addition, the PV system causes power loss by special situations, including the shadows of the surrounding environment, such as nearby buildings and trees. In other words, an increase in power loss and a decrease in life cycle can occur because of the partial shadow and hot-spot effect. Therefore, this paper proposes the optimal configuration algorithm of a bypass diode to improve the output of a PV module and one of a PV array to minimize the loss of the PV array. In addition, this paper presents a model of a PV module and PV array based on the PSIM S/W. The simulation results confirmed that the proposed optimal configuration algorithms are useful tools for improving the performance of PV system.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

A Study on System Retrofit of Complex Energy System (복합에너지시스템의 성능개선에 관한 연구)

  • Choi, Jung-Hun;Moon, Chae-Joo;Chang, Young-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The application of renewable energies such as wind and solar has become an inevitable choice for many countries in order to achieve the reduction of greenhouse gases and healthy economic development. However, due to the intermittent characteristics of renewable energy, the issue with integrating a larger proportion of renewable energy into the grid becomes more prominent. A complex energy system, usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. Compared with the power system, control and optimization of the complex energy system become more difficult in terms of modeling, operation, and planning. The main purpose of the complex energy system retrofit for samado island with microgrid system is to coordinate the operation with various distributed energy resources, energy storage systems, and power grids to ensure its reliability, while reducing the operating costs and achieving the optimal economic benefits. This paper suggests the improved complex energy system of samado island with optimal microgrid system. The results of test operation show about 12% lower SOC variation band of ESS, elimination of operation limit in PV and reduction of operation time in diesel generator.

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.