• Title/Summary/Keyword: Power modeling

Search Result 3,057, Processing Time 0.064 seconds

Development of Walk-down Performance Procedures for Fire Modeling of Nuclear Power Plants based on Deterministic Fire Protection Requirements (결정론적 화재방호요건을 기반으로 한 원자력발전소 화재모델링 현장실사 수행절차 개발)

  • Moon, Jongseol;Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.43-52
    • /
    • 2019
  • A walk-down procedure for fire modeling of nuclear power plants, based on deterministic fire protection requirements, was developed. The walk-down procedure includes checking the locations of safety shutdown equipment and cables that are not correctly indicated on drawings and identifying the existence and location of combustibles and ignition sources. In order to verify the performance of the walk-down procedure developed in this study, a sample of important equipment and cables were selected for hypothetical multiple spurious operation (MSO) scenarios. In addition, the hypothetical fire modeling scenarios were derived from the selected safe shutdown equipment and cables and an actual walk-down was conducted. The plant information collected through the walk-down was compared to the information obtained from the drawings, so that the collected information may be used as input values for the fire modeling.

Generalization modeling and verify for low-orbit satellite regulation converter (저궤도 위성의 정 전압 변압기 일반화 모델링 및 적용)

  • Yun, Seok-Teak
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellites is very important to survival operation and hard to test, increasing reliability is very critical. Especially LEO small satellites are very sensitive to power system, effective stabilization control is important. Because of various need of load condition, converter design are complicated. Therefore this paper introduced general modeling of LEO small satellite converter system and analyzed stabilization control design. The performance prediction of LEO small satellites power system is typically critical. Because of verity controller and rectification value, it is hard to computation and test implementation. So, this approach has merit that will reduce cost and make more reliable system. Furthermore, it can be constraint of converter specification and controller design. This paper will examine generation a modeling of LEO small satellites power converting system, and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite.

Transformer Temperature forecast method using Top Oil Temperature Rising & Current (최상부 유온 상승과 전류를 이용한 변압기 온도 예측 방법)

  • Ko, Dong-Wook;Kim, Kwang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1689-1690
    • /
    • 2008
  • In this paper, The method of a temperature rasing forecast is suggested and simulated. The data used in this simulations exists in the KD Power and it was obtain by real transformer. The method of temperature forecast is based on a top oil temperature rising modeling which is proposed by the IEEE journal. We propose modifications of a modeling that accurately predicts a future transformer temperature. This Method is verified by simulations.

  • PDF

A Study on Modeling of Pumped Storage Power Plant (양수발전소의 모델링에 관한 연구)

  • Han, Yoon-Gyo;Lee, Seung-Yoon;Park, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.77-78
    • /
    • 2015
  • For the smooth operation and efficient management of pumped storage power plants, we should be understand a generator, turbine, exciter, governor, and stabilizer and prepare an abnormal accident through an accident simulation by software such as PSCAD, PSS/E. This paper investigates configuration of the generator system of ${\bigcirc}{\bigcirc}$ pumped storage power plant. And describes the modeling and fault simulation studies using PSCAD.

  • PDF

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

Simplified PV Cell and MPPT Modeling based on PSCAD/EMTDC (PSCAD/EMTDC를 이용한 PV Cell 및 MPPT 모델링에 관한 연구)

  • Shuai, Zang;Choi, Joon-Ho;Cho, Jung-Sub;Park, In-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1118_1119
    • /
    • 2009
  • The power generated by a Photovoltaic(PV) cell depends on the operating voltage of the array, its voltage-current and voltage-power characteristic curves specify a unique operating point at which maximum possible power is delivered and the array is operated at its highest efficiency. PSCAD/EMTDC, which is a simulation tool for the transient analysis of an electric power system, was used to simulate the PV Cell system. So, in this paper, the PV cell components of the PSCAD/EMTDC were developed, and the Maximum Power Point Tracking(MPPT) modeling was used for the developed PV power system to find the maximum power.

  • PDF

Modeling & Simulation of a Hydraulic Servo Actuator Cushion for Power Plants (발전소용 유압 서보액추에이터의 쿠션 모델링 및 시뮬레이션)

  • Lee, YongBum;Yoon, Young Hwan
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Turbine power control devices at a nuclear / thermoelectric power plant lead to failure by creating mechanical shocks and strong vibrations that are due to the strong elasticity of a spring and the inertia of the valve face during its rapid movement to block steam. To ensure durability of the turbine power control device, which is the main component in the power plant, it is necessary to develop a device that can prevent such vibrations. In this study, a cushion mechanism is added to the head of the hydraulic servo actuator, which is a turbine power control device. Moreover, the cushion mechanism, which includes various modifies shapes and orifices is investigated dynamically through modeling and simulations.

Analysis of Load Composition for KEPCO's Power System (한전계통의 부하구성비 분석)

  • Park, Si-Woo;Kim, Ki-Dong;Yoon, Yong-Beum;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1478-1480
    • /
    • 1999
  • The accurate analysis of power system requires detailed load model. There are two basic approaches in modeling the load characteristics. One is to directly measure the voltage and frequency sensitivity of the load P and Q at substations and feeders. The other is to build up a composite load model from each load component. Each of these methods has advantages and disadvantages. This paper presents load composition for KEPCO's power system to develop load models by the component-based load modeling.

  • PDF

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.