• Title/Summary/Keyword: Power maximization

Search Result 169, Processing Time 0.03 seconds

Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform (최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구)

  • 이형우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

A Probabilistic Analysis for Profit Maximization in a Microgrid Including Wind Power (풍력을 포함한 마이크로그리드의 이윤극대 급전계획 연구)

  • Jo, Byuk-Keun;Han, Jong-Hoon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.270-271
    • /
    • 2011
  • Due to integration of wind power, its unpredictable uncertainty can be a very lethal factor in generation dispatch problem. To handle such uncertainty of wind power output, a profit maximization problem is formulated and random wind speed is modeled by Weibull distribution in this paper. A case study is calculated through profit maximization approach with random wind speed. The effect of case study results is evaluated on how the uncertain wind power integration into the power system affects on the generation dispatch.

  • PDF

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Performance Improvement of the Linear BLDC Generator in a NASA Deep Space Explorer

  • Lee, Hyung-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.108-113
    • /
    • 2004
  • This paper presents methods to improve performance of the power supply system in a NASA deep space explorer. In the Stirling engine driven reciprocating Brushless DC (BLDC) generator, the accurate position information of the prime mover is important to diagnose the performance of the engine and prevent distortion of the output power. Since sensors to detect the position are fragile and unreliable, and conventional sensorless techniques have drawbacks in the low speed region, a novel sensorless position detection technique for the prime mover has been proposed and verified. Another major issue of the generator for the spacecraft is power density maximization. The mass of the power system is important to the mass of the satellite. Therefore, the components of the spacecraft should be lightweight. Conventional rectification methods cannot achieve the maximum power possible due to non-optimal current waveforms. The optimal current waveform for maximizing power density and minimizing machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation work.

The Optimal Pourer Flow Considering the Characteristics of Electric Pourer Consumers (전력소비자 특성을 고려한 최적조류계산)

  • 김문영;백영식;송경빈
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2003
  • In a deregulated electric power market, a demand function to consider the characteristics of electric power consumers should be required. It is essential that the optimal power flow algorithm with object function of social welfare maximization using the demand function for a competitive electric power market is applied to resolve in a point of economic benefits as well as the security of power systems. Therefore, in this paper, we implement the optimization problem based on linear programming to consider the characteristics of electric power consumers using the demand function and analyze not only the nodal cost for generations and demands but also the variation of demands as a function of the characteristics of electric power consumers through numerical studies.

Torque Maximization Control of 3-Phase BLDC Motors in the High Speed Region

  • Im, Won-Sang;Kim, Jong-Pil;Kim, Jang-Mok;Baek, Kwang-Ryul
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • This paper proposes a new torque control algorithm for BLDC motors to get the maximum torque in the high speed region. The delay of the phase currents is severe due to the stator reactance. The torque fluctuations of BLDC motors increase and the average torque is decreases due to a slow rise in the phase current when compared to the back EMF. In this paper, the phase current of BLDC motors under the high speed condition is analyzed and a torque maximization control is developed on the basis of using numerical analysis. Computer simulations and experimental results show the usefulness of the proposed control algorithm.

D2D Utility Maximization in the Cellular System: Distributed Algorithm

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.57-64
    • /
    • 2019
  • We consider the D2D sum utility maximization in the cellular system. D2D links reuse the uplink resource of cellular system. This reuse may cause severe interference to cellular users. To protect the cellular users, interference limit from the D2D links is required. In this setting, D2D sum utility maximization problem is investigated. Each D2D link has limited transmit power budget. Because optimum solution may require global information between links and computational complexity, we propose the distributed algorithm which only require the local information from each D2D link and simple broadcasting. Simulation results are provided to verify the performance of the proposed algorithm.

The uses of Optimal Power Flow in Competitive Electric Power market (경쟁적 전력시장 하에서의 최적조류계산 응용에 관한 연구)

  • Hur, Dong;Park, Jong-Keun;Kim, Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.379-387
    • /
    • 2001
  • This paper shows that we can make simple modifications to an existing optimal power flow(OPF) algorithm that minimizes generation costs in order to solve the maximization of social welfare objective of the OPF in a competitive electric power market. We have illustrated the potential for the use of OPF in light of the marked impacts on nodal prices and generation/demand allocation levels among competing suppliers. This paper can provide all market players with the transparent information that ensures sufficient control over producers and consumers in case of economic of secure operation with transmission line outage while maximizing the sum of participants social benefit of participating in the electricity energy market.

  • PDF

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

Maximizing Network Utility and Network Lifetime in Energy-Constrained Ad Hoc Wireless Networks

  • Casaquite, Reizel;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1023-1033
    • /
    • 2007
  • This study considers a joint congestion control, routing and power control for energy-constrained wireless networks. A mathematical model is introduced which includes maximization of network utility, maximization of network lifetime, and trade-off between network utility and network lifetime. The framework would maximize the overall throughput of the network where the overall throughput depends on the data flow rates which in turn is dependent on the link capacities. The link capacity on the other hand is a function of transmit power levels and link Signal-to-Interference-plus-Noise-Ratio (SINR) which makes the power allocation problem inherently difficult to solve. Using dual decomposition techniques, subgradient method, and logarithmic transformations, a joint algorithm for rate and power allocation problems was formulated. Numerical examples for each optimization problem were also provided.