• Title/Summary/Keyword: Power management system

Search Result 2,975, Processing Time 0.051 seconds

Effective Management of Power System by Demand Control (수요 제어에 의한 전력 시스템의 효율 운전)

  • 최진원
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.77-79
    • /
    • 2003
  • For the management of maximum demand power, power control system that is consist of CCMS(Central Control and Management System) and MCCS(Minimum Cost Control and management Software) is proposed. MCCS has the basic functions of the set of target power and the enrollment of load control logic. And also MCCS give the simulation of Power rate that help more effective Demand Control.

  • PDF

Design of a hybrid power management system and cold start simulation in a fuel cell ship with PLECS

  • Oh, Jin-Seok;Kang, Young-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Currently, many studies on green ships are under way. Fuel cell (FC) ships are of interest as future low-emission, fuel-efficient vessels. In this paper, a hybrid power management system for an FC ship was designed. The system consists of an FC, a battery, a unidirectional DC/DC converter, a bidirectional DC/DC converter, a filter, an inverter, and a propulsion component. To design the system, we analyze electric sources and converters, and create PLECS models of hybrid power management system. Then, we check the cold start sequence and perform a simulation to understand the characteristics of the hybrid power management system in an FC ship.

A Design of PC Power-Saving System Security Using IP Address Restriction (IP 주소 제한을 이용한 PC 절전 시스템 보안 설계)

  • Kim, Hong Yoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.49-57
    • /
    • 2013
  • Power-saving PC software enables the inexpensive power control, but the installation of the power-saving software in all computers in the organization is not an easy task. Computer users in the organization are usually not cooperative as they do not think the power-saving cost is directly related to themselves. The PC power-saving system provides advantage to driving active participation in which users installs the power saving software by restricting IP address through the power management server. However, the problem with this approach is the security vulnerability to IP spoofing attacks, therefore we need to solve the problem that disrupt the entire network system rather than saving electric power. This paper proposes the security authentication system that can implement the efficiency saving power by providing high security for the members' computer system of the public institutions based on the PC power-saving system. Also, by analyzing it in comparison with other method, it is possible to check that the prospects of safety and efficiency are strengthened.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

Software Functional Requirements and Architectures of Microgrid Energy Management System

  • Sohn, Jin-Man;Yun, Sang-Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.269-272
    • /
    • 2016
  • Distribution management system or microgrid energy management system plays an important role in monitoring, operation and control of electrical distribution systems by utilizing IT infrastructure. Nowadays, the rapid increase of the distributed resources makes the conventional management system have some additional functionality for the reliable operation due to intermittent renewables and the efficient operation on the economical purpose. In this paper, the brief standard software functional requirements of microgrid energy management system are provided through survey of the recent commercial products of the major vendors, and furthermore the architectures of microgrid energy management system are provided in comparison with major suppliers' microgrid energy management system. The summary of investigation will be able to make the developers and researchers focus on the specific functionality in the real world.

Variable Priority Number Control of SPMS for Leisure Ship

  • Oh, Jin-Seok;Park, Do-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • The power system of leisure ship has a character of stand-alone type, so it continuously checks the usable power. Especially, the leisure ship using renewable energy needs to adjust the power consumption of loads according to the usable power. Also, the important loads of leisure ship are different by operation mode. However, current power management system doesnot consider such character. This paper studied load management system of the SPMS(Smart Power Management System) and composed using the smart plug. The SPMS controls the loads depending on a user's pattern and character through variable priority number control. This control algorithm was verified through simulation of assumed user and situation using LabVIEW.

Power Management for Mobile Terminal (모바일 단말에서의 전원관리 기술)

  • Lee, Junghee;Park, Hojun;Kim, Jaemyoung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.194-201
    • /
    • 2007
  • As the performance of the mobile terminal becomes higher, the power consumption gradually increases. As a result, power management is one of the most important issues in mobile system with battery. In this paper, we describe an DPM(Dynamic Power Management) using DVS(Dynamic Power Management) as a power management mechanism in Qplus operating system. DVS generally considers a specific device such as CPU, whereas we consider the relations with other hardware components as well as each component. We specially focus on the relation between CPU, memory and LCD devices. We also designs a kernel monitor to collect information to decide the policy for power management. According to the experimental results, the proposed method enables to save much power.

  • PDF

The Development of Korea Distribution Asset Management System (한국형 배전계통 자산관리 시스템의 개발)

  • Chae, Woo-Kyu;Park, Chang-Ho;Jeong, Jong-Man;Park, Sang-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.187-189
    • /
    • 2005
  • The asset management system for power distribution is necessary to make efficient use of distribution asset and to devise optimum investment plans. So we developed KDAMS(Korea Distribution Asset Management System) that is adopting reliability indexs, SAIFI and SAIDI, and operator's experiences. This paper presents functions of the system that is reliability management, failure rate management, establishment of optimum investment plan and so on. And it presents the of used algorithms to develop this system.

  • PDF

Development of Intelligent Switchgear Monitoring System based on Smartphone (스마트폰 기반의 지능형 수배전반 모니터링 시스템 구현)

  • Jung, Hae-Kyung;Jeon, Gam-Pyo;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.378-379
    • /
    • 2012
  • Nowadays, great energy consumption in advanced electrical industry has called up the great y efficiency. Electric power IT industry such as intelligent electric power system is receiving great attention and being marked up as a new growth engine. Through Intelligent electric power system, the electric power supply can be balance optimized according to demand, giving huge cost savings advantage for energy imports, infrastructure construction and operation. Nevertheless, the intelligent system promotes better reliability in power supply. Manual electric power management using man power appears to be non-practical. Real time electric power management on all facilities and equipment can be done through an intelligent electric power system, any accident break out issue can be easily recorded and recognized. In this paper, a fully integrated intelligent switchgear electric management system is developed to monitor and remote control the electrical switch based on smart phone. The proposed system is superior than the existing switchgear management system's weakness and can sharply improve effectiveness and stability with low cost. In future, the proposed system is expected to be greatly contributed to the advancement of the IT industry in electric power management.

  • PDF