• Title/Summary/Keyword: Power management system

Search Result 3,010, Processing Time 0.028 seconds

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Study for Power Management System using Regenerative Energy in Electric Railway Systems (회생에너지를 이용한 도시철도 전력관리시스템 구축에 관한 연구)

  • Lee, Hansang;Cho, Yoonsung;Kim, Hyungchul;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.191-196
    • /
    • 2014
  • For the large scale of electricity consumer, since the price for the electricity consumption depends on the peak power, the issue for peak power reduction have been being studied widely. Electric railway systems, which is one of the most representative large scale of loads, also has assignment to reduce the peak power since they have high peak power and low energy consumption load characteristics. In the aspect of the economic operation through reduction of peak power, this paper proposes a novel algorithm for power management system in electric railway systems using energy storage.

Development of the Life Management D/B System for Concrete Structures in Nuclear Power Plants (원전 콘크리트 구조물의 수명관리 D/B 시스템 개발)

  • 이종석;김도겸;함영승;임재호;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.637-642
    • /
    • 1998
  • This study was performed to develop effective management system of concrete structures in Nuclear Power Plants. This D/B system includes three kinds of data : 1)visual inspection data(cracking, spalling, etc.) 2) durability data carbonation, chloride attack, etc. 3) in-service inspection data(prestressing force. material properties, etc. ) By using the life management D/B System, the field engineers can easily acquire the information about the various inspection data. repair and accidental histories of structures. This system, will contribute to the efficient life management of concrete structures.

  • PDF

Demand Controller Management System using Power Line Modem (전력선 모뎀을 이용한 최대 수요전력 관리 시스템)

  • Kim, Soo-Gon;Lim, Byung-Kuk;Lee, Won-Sun;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1067-1070
    • /
    • 2002
  • The maximum demand power management system(the demand controller) is an equipment for demand management. If the pre-estimated load is over the preset power, the demand controller make warnings and break the load circuit according to predefined priority. Then consumption power is maintained below the maximum demand power level. The DTU receives the control commands from demand controller, and then controls loads. In this paper, the power line cables are used for communication between the demand controller and DTUs and monitoring PC. The experiments show that the proposed system is compatible with the conventional system, and feasible for new or remodeling plant.

  • PDF

Optimization Power Management System for electric propulsion system (전기추진시스템용 OPMS 기법 연구)

  • Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

Review of Aging Management for Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Yongdeog Kim;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC's guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE's program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility's current practices-periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure-were evaluated for their suitability in managing the silo system's aging. Based on this review, several improvements were proposed.

Knowledge-based System for Power Generator Annual Maintenance Scheduling (발전기 연간 정기보수계획을 위한 지식 베이스 시스템)

  • Ahn, Byong-Hun;Kim, Chul;Shin, Jae-Yeong;Lee, Kyung-Jae;Kwon, Tae-Won;Lee, Byung-Ha;Ham, Wan-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.47-50
    • /
    • 1991
  • This paper discusses a knowledge-based system being developed by KAIST and KEPCO to assist planning the annual maintenance schedule of power units. To meet users' requirements, we have designed the system with several features: man-machine interaction, catalog system, user-friendliness, the hybrid-system of math-model and knowledge-base. In this paper, we introduce the outline of our system.

  • PDF

A Study on Power Control using PMS (PMS 시스템을 활용한 전력제어에 관한 연구)

  • Kim, Sung-Cheol;Kim, Kyoung-Wook;Woo, Chun-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.194-198
    • /
    • 2016
  • The electric power industry have recently been building out Smart Grids, a two-way electricity grid that connects power consumers and producers to a network that enables one to respond quickly to any eventuality. The construction of a two-way electricity grid means that the power control process becomes unified, from what used to be separate processes that originate individually from the consumption phase and the production and supply phases. The role of power control that takes place within each section of the power system may be independent. However, this does not mean the independent control sections are operated individually, but are configured to meet a single target and purpose. Each control section possesses enough degree of independency to respond to eventualities that may occur within different stages of the power system, but at the same time, possesses unified system elements for the stability of the entire power system. From this perspective, Smart Grids are widely regarded as the most rational power industry operation plan. A variety of different control and communication systems can be applied for an effective deployment of Smart Grids. Recently, we have seen systems such as PMS(Power Management System) and PAS(Process Automation System) applied in the deployment of Smart Grids, which are developed from the techniques utilized in the industry. The PMS is attracting particular attention for its power operations management ability. In this study, we propose plans for improvement in the rational development of power system controls through case studies of live PMS operations.

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu;Clare, Lindsay;Yuan, Xibo;Wang, Jun;Wang, Chonglin;Li, Jianhua
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.533-546
    • /
    • 2018
  • This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.