• Title/Summary/Keyword: Power integrity analysis

Search Result 325, Processing Time 0.028 seconds

Structural Development for Human Powered Aircraft (인간동력항공기 구조 개발)

  • Shin, Jeong Woo;Woo, Dae Hyun;Park, Ill Kyung;Lee, Mu-Hyoung;Lim, Joosup;Park, Sang Wook;Kim, Sung Joon;Ahn, Seok Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2013
  • Human Powered Aircraft (HPA) should be light in weight and have high efficiency because power source of propulsion is human muscles. Airframe structure takes up most of empty weight of aircraft, so weight reduction of structure is very important issue for HPA. In this paper, design/analysis/test procedures for ultra light weight structure of the HPA developed by Korea Aerospace Research Institute (KARI) are explained briefly. Structural design is conducted through case studies on HPA in the USA and Japan. Loads analysis is performed to calculate design loads which is needed for structural design and analysis. Structural analysis is conducted for structure sizing. Static strength test of main wing spar which is primary structure of wing is performed to verify structural integrity.

CCDP Evaluation of the Eire Area of NPPs Using Eire Model CEAST (화재모델 CFAST를 이용한 원전 화재구역의 CCDP평가)

  • Lee Yoon-Hwan;Yang Joon-Eon;Kim Jong-Hoon;Noh Sam-Kyu
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • This paper describes the result of the pump room fire analysis of the nuclear power plant using CFAST fire modeling code developed by NIST. The sensitivity studies are performed over the input parameters of CFAST: the constrained or unconstrained fire, Lower Oxygen Limit (LOL), Radiative Fraction (RF), and the opening ratio of the fire doors. According to the results, a pump room fire is the ventilation-controlled fire, so it is adequate that the value of LOL is 10% which is also the default value. It is anlayzed that the Radiative Fraction does not affect the temperature of the upper gas layer. It is appeared that the integrity of the cable located at the upper layer is maintained except for the safety pump at the fire area and the Conditional Core Damage Probability (CCDP) is 9.25E-07. It seems that CCDP result is more realistic and less uncertain than that of Fire Hazard Analysis (FHA).

Analysis of Research Trend and Performance Comparison on Message Authentication Code (메시지 인증 코드에 대한 연구 동향 분석 및 성능 비교)

  • Kim, Minwoo;Kwon, Taekyoung
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1245-1258
    • /
    • 2016
  • Cryptographic technologies providing confidentiality and integrity such as encryption algorithms and message authentication codes (MACs) are necessary for preventing security threats in the Internet of Things (IoT) where various kinds of devices are interconnected. As a number of encryption schemes that have passed security verification are not necessarily suitable for low-power and low-performance IoT devices, various lightweight cryptographic schemes have been proposed. However, a study of lightweight MACs is not sufficient in comparison to that of lightweight block ciphers. Therefore, in this paper, we reviewed various kinds of MACs for their classification and analysis and then, we presented a new way for future MAC development. We also implemented major MAC algorithms and performed experiments to investigate their performance degradation on low-end micro-controllers.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Evaluation Using Dynamic Characteristic of Steel Structures under Periodical Impact Loads (주기적 충격하중을 받는 강 구조물의 구조건전성 평가)

  • Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Lee, Kang Min;Yoo, Kyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.120-128
    • /
    • 2011
  • Recently, safety diagnosis of the existing structures has been emerged as important issue. In particular, systematical and precise safety diagnostics for steel structures for power substation, have been required. Steel structures for power substation are under the periodical impact loads from operations of gas insulated switchgear. These loading condition accelerates damage and aging of structure. The objective of this research is to evaluate damage of structure under periodical impact loads. To evaluate the integrity of structures as organizing mathematical models including the dynamic characteristics of structures, Frequency Domain Decomposition method was choiced and an algorism was proposed. For verifying this methods and algorism, a mathematical model is composed of the development of a variety of reverse analysis and a signal processing technology reflecting physical damage of structures. A series of analysis and test results indicatge that proposed method has a confidence for applying a filed test. Therefore, it is expected to be able to take advantage of system identification to detect damage for the maintenance and management of steel structures under periodical impact loads such as power substation.

A Safety Analysis of a Steam Generator Module Pipe Break for the SMART-P

  • Kim Hee Kyung;Chung Young-Jong;Yang Soo-Hyung;Kim Hee-Cheol;Zee Sung-Quun
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • SMART-P is a promising advanced small and medium category nuclear power reactor. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. The enhancement of the safety and reliability is realized by incorporating inherent safety improving features and reliable passive safety systems. The improvement in the economics is achieved through a system simplification, and component modularization. Preliminary safety analyses on selected limiting accidents confirm that the inherent safety improving design characteristics and the safety system of SMART-P ensure the reactor's safety. SMART-P is an advanced integral pressurized water reactor. The purpose of this study is for the safety analysis of the steam generator module pipe break for the SMART-P. The integrity of the fuel rod is the major criteria of this analysis. As a result of this analysis, the safety of the RCS and the secondary system is guaranteed against the module pipe break of a steam generator of the SMART-P.

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Parallel Process System and its Application to Steam Generator Structural Analysis

  • Chang Yoon-Suk;Ko Han-Ok;Choi Jae-Boong;Kim Young-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2007-2015
    • /
    • 2005
  • A large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. Also, the utilization of massively parallel processors has been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The later was constructed using eight processing elements and the former was developed adopting both hierarchical domain decomposition method and balancing domain decomposition method. Then, to verify the efficiency of the established system, it was applied for structural analysis of steam generator in nuclear power plant. Since the prototypal evaluation results agreed well to the corresponding reference solutions it is believed that, after reinforcement of PC cluster by increasing number of processing elements, the promising parallel process system can be utilized as a useful tool for advanced structural integrity evaluation.

A Study for the Proximity Condition and Optimum Analysis Technique for the SG Tubes (증기발생기 세관에 대한 근접도 상태 및 최적 평가기법에 대한 연구)

  • Shin, Ki-Seok;Moon, Gyoon-Young;Lee, Young-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.34-39
    • /
    • 2008
  • Steam Generator(SG) tubes are classified as one of the key components in nuclear power plants, and they should be periodically examined by the intensified management program for the assurance and diagnosis of their structural integrity. In this study, we use the optimum analysis technique to draw the detection and categorization of bowing(BOW) signals; abnormal tube-to-tube proximity in the SG upper bundle free span area. The locations in which BOW signals are detected likely have latent degradation of ODSCC(Outer Diameter Stress Corrosion Cracking). For the sake of timely and correct detection of BOW signals and diagnosis of ODSCC, we carried out the experimental demonstrations using a reduced mock-up. And we validated the MRPC(Motorized Rotating Pancake Coil) analysis technique is better than the bobbin. Hence, it comes to conclusion that the optimum analysis technique can be a good alternative for the reliable SG tube examination.

  • PDF