• Title/Summary/Keyword: Power gain

Search Result 2,356, Processing Time 0.056 seconds

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

Gain Characteristics of Fabry-Perot Type AlGaAs Semiconductor Laser Amplifier (Fabry-Perot 공진기형 AlGaAs 반도체 레이저 증폭기의 이득특성)

  • 김도훈;권진혁
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.67-73
    • /
    • 1991
  • The unsaturated signal gain, signal gain bandwidth, and saturation power which are important parameters determining characteristics of the semiconductor laser amplifier were measured for an AlGaAs Fabry-Perot cavity type laser amplifier and compared with the results of Fabry-Perot formula. The unsaturated signal gain 25 dB is obtained near oscillation thereshold current at $0.7\mu\textrmW$ input power. The corresponding signal gain bandwidth was about 3 GHz. Also. We measured the variation of the saturation signal gain and saturation power.

  • PDF

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Design and Control of Gain-Flattened Erbium-Doped Fiber Amplifier for WDM Applications

  • Kim, Hyang-Kyun;Park, Seo-Yeon;Lee, Dong-Ho;Park, Chang-Soo
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 1998
  • A simple experimental method to design gain-flattened erbium-doped fiber amplifier is proposed and demonstrated based on the two linear relations between the output power and the pump power, and between the gain and the length of the eribium-doped fiber at the gain flattened state. The spectral gain variation of the eribium-doped fiber amplifiber constructed by this method was less than 0.4 dB over 12 nm (1,545~1,557nm) wavelength region. The gain flatness is also controlled within 0.4 dB over the input power range of -30~-15dBm/ch through the feedback control utilizing the amplified spontaneous emission power in the 1,530 nm region.

  • PDF

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

A Study of Impedance Matching Circuit Design for PLC

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • This paper presents two methods of designing a Broadband Impedance Matching (BIM) circuit for maximizing a power line communication (PLC) equipment (or Modem) signal injection into its load at any power line connection port. This optimal (BIM) circuit design is achieved in two phases: Butterworth gain function and Tchebycheff gain function. According to the comparison of simulation and practical results, the performances of two gain functions on BIM are discussed.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

DC Power Dissipation Characteristics for Dual-mode Variable Conversion Gain Mixer (이중모우드 가변 변환이득 믹서의 전력 효율 특성)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.113-114
    • /
    • 2006
  • In this paper, dual-gate mixer has been designed and optimized to have variable conversion gain for WiBro and WLAN applications and to save power. With the LO power of 0dBm and RF power of -50dBm, the mixer shows 15dB conversion gain. When RF power increases from -50dBm to -20dBm, the conversion gain decreases to -2dB with bias change. The variable conversion gain can reduce the high dynamic range requirement of AGC burden at IF stage. Also, it can save the dc power dissipation of mixer up to 90%.

  • PDF

Power Transmission Determined by the Mutual Impedance and the Transducer Power Gain in the Near Field Region

  • Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.152-155
    • /
    • 2011
  • This paper describes the role of mutual impedance and the transducer power gain which comes from key parameters to determine the amount of wireless power especially in a near-field environment. These two key parameters are applied to the two configurations; one is a dipole-dipole, and the other is a dipole-metal plate-loop configuration. Discussions are given on the achievable maximum power transfer between the sender and the receiver affected by the matching and the pass blockage.

The Digital Controller of the Single-Phas Power Factor Correction(PFC) having the Variable Gain (가변 이득을 가지는 단상 PFC 디지털 제어기)

  • 정창용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.163-167
    • /
    • 2000
  • This paper presents the digital control of single-phase power factor correction(PFC) converter which has the variable gain according to the condition of inner control loop error. Generally the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This has a bad influence on the power factor because current loop doesn't operate smoothly in the condition that input voltage is low In particular a digital controller has more time delay than an analog controller and degrades This drops the phase margin of the total digital PFC system,. It causes the problem that the gain of current control loop isn't increased enough. In addition the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult The digital PFC controller presented in this paper has a variable gain of current control loop according to input voltage. The 1kW converter was used to verify the efficiency of the digital PFC controller.

  • PDF