• Title/Summary/Keyword: Power fluctuation

Search Result 599, Processing Time 0.078 seconds

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • Solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can resulted in economic loss considering the amount of multi-billion won. This paper analyzed the influence of recent X-class solar storm occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (01:30 - UTC), and compared with the data before and after a week. The proton data of 18th of February considered that the solar storm reached on earth showed a fluctuation compared to the data before and after a week. The positioning results at Daejeon and Seoul of Korea also showed higher positioning error compared to the data before and after a week results.

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.

Major environmental factors and traits of invasive alien plants determining their spatial distribution

  • Oh, Minwoo;Heo, Yoonjeong;Lee, Eun Ju;Lee, Hyohyemi
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.277-286
    • /
    • 2021
  • Background: As trade increases, the influx of various alien species and their spread to new regions are prevalent and no longer a special problem. Anthropogenic activities and climate changes have made the distribution of alien species out of their native range common. As a result, alien species can be easily found anywhere, and they have nothing but only a few differences in intensity. The prevalent distribution of alien species adversely affects the ecosystem, and a strategic management plan must be established to control them effectively. To this end, hot spots and cold spots were analyzed according to the degree of distribution of invasive alien plants, and major environmental factors related to hot spots were found. We analyzed the 10,287 distribution points of 126 species of alien plants collected through the national survey of alien species by the hierarchical model of species communities (HMSC) framework. Results: The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as AUC values, respectively. The hot spots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju island. Generally, the hot spots were found where the higher maximum temperature of summer, precipitation of winter, and road density are observed, but temperature seasonality, annual temperature range, precipitation of the summer, and distance to river and sea were negatively related to the hot spots. According to the model, the functional traits accounted for 55% of the variance explained by the environmental factors. The species with higher specific leaf areas were more found where temperature seasonality was low. Taller species preferred the bigger annual temperature range. The heavier seed mass was only preferred when the max temperature of summer exceeded 29 ℃. Conclusions: In this study, hot spots were places where 2.1 times more alien plants were distributed on average than non-hot spots (33.5 vs 15.7 species). The hot spots of invasive plants were expected to appear in less stressful climate conditions, such as low fluctuation of temperature and precipitation. Also, the disturbance by anthropogenic factors or water flow had positive influences on the hot spots. These results were consistent with the previous reports about the ruderal or competitive strategies of invasive plants instead of the stress-tolerant strategy. The functional traits are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters, and our result confirmed this. Therefore, in order to effectively control alien plants, it is judged that the occurrence of disturbed sites in which alien plants can grow in large quantities is minimized, and the river management of waterfronts is required.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

Long-Term Observation of Temperature in the Coastal Waters Adjacent to the Wolsung Nuclear Power Plant (월성 원자력 발전소 주변 해역의 장기간 수온관측)

  • Chung, Jong-Yul;Kang, Hyoun-Woo;Shin, Young-Jae;Kim, Kye-Young;Jun, Ho-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.183-192
    • /
    • 1998
  • The long-term observation of temperature in the coastal waters adjacent to the Wolsung Nuclear Power Plant has been carried out from November 10, 1996 to August 22, 1997, for approximately 280 days using a real-time temperature measurement buoy system. The sea-surface temperature was measured at every 10 minute using 10 buoys. The vertical structure of temperature was investigated near the outlet of the plant with two thermistor chains equipped with 10 sensors at 1 m interval The monthly averaged temperature was the lowest with spatial average of $12.8^{\circ}C$ in February and was the highest in August with spatial average of $19.6^{\circ}C$. The extremely low temperature was frequently observed between June and August, which seems to be the consequence of the intrusion of cold water near the southeastern coast of Korea. Distributions of the daily and hourly averaged temperature show that the highest temperature always occurred near the outlet of the plant and the warm-water patch moved along the north-south direction with the semidiurnal period. The semidiurnal fluctuation of temperature was also observed near the surface of the vertical profiles. The spectral analysis of temperature between February and April 1997 shows that the semidiurnal components prevailed near the outlet. It is likely that the semidiurnal components were due to the prevailing semidiurnal tide in this region. In August 1997, the diurnal components were dominant at the surface water of all stations except Station 12, which suggests that the warm water from the outlet of the plant has less effects in summer on the surrounding waters than the strong solar radiation.

  • PDF

Analysis of the Relationship between the Flow Characteristics of the Tsushima Warm Current and Pacific Decadal Oscillation (대마난류의 유동 특성과 PDO의 관계 분석)

  • Seo, Ho-San;Chung, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2022
  • In this study, to understand the factors influencing the flow change the Tsushima Warm Current (TWC), the correlation between the volume transport the TWC, El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) was analyzed. A calculation of the monthly volume transport of TWC for 25 years (1993-2018) revealed that the seasonal fluctuation cycle was the largest in summer and smallest in winter. Power spectrum analysis to determine the periodicity of the TWC volume transport, Oceanic Niño Undex (ONI), and PDO indicated that the TWC volume transport peaked at a one year cycle, but ONI and PDO showed no clear cycle. Further, to understand the correlation between the TWC transport volume and ONI and PDO, the coherence estimation method was used for analysis. The coherence of ONI and PDO had a high mutual contribution in long-period fluctuations of three years or more but had low mutual contribution in short-period fluctuations within one year. However, the coherence value between the two factors of the TWC volume transport and PDO was 0.7 in the 0.8-1.2 year cycle, which had a high mutual contribution. Meanwhile, the TWC volume transport and PDO have an inverse correlation between period I (1993-2002) and period III (2010-2018). When the TWC maximum transport volume (2.2 Sv or more) was high, the PDO index showed a negative value below -1.0, and the PDO index showed a positive value when the TWC maximum transport volume was (below 2.2 Sv). Therefore, using long-term PDO index data, changes in the TWC transport volume and water temperature in the East Sea coastal area could be predicted.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.