• Title/Summary/Keyword: Power feedforward

Search Result 248, Processing Time 0.064 seconds

The Study on the Linearizer Using Feedforward Method (Feedforward 방식을 이용한 선형화기에 관한 연구)

  • 정종한;박천석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.337-340
    • /
    • 2000
  • In this paper, I compared some characteristics between HPA and LPA using Feedforward method. Feedforward method is known for best IMD correction. HPA generated 46.5㏈c at 45.5㏈m output power. But, using feedforward linearing method, I could improve IMD to 67.17㏈c at the same output power. IMD could be improved 20.67㏈ at 45.5㏈m output power. I measured average power, IMD, total current, and efficiency of two amplifier at many different power levels. I could get about 70d3c IMD using feedforward method.

  • PDF

The Design of the Linear Power Amplifier using Analog Feedforward Linearizer for IMT-2000 Band (아날로그 Feedforward 선형화기를 이용한 IMT-2000대역 선형증폭기 설계)

  • 朴雄熙;李慶熙;姜尙璂
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.27-27
    • /
    • 2002
  • In this paper, the LPA(Linear Power Amplifier) using new analog feedforward linearizer for IMT-2000 frequency band(2110MHz∼2170MHz) is proposed and fabricated. The designed analog feedforward linearizer system possessing the characteristics of stable operation for input power variation is simple structure and small size. When two-tones in IMT-2000 frequency band are applied to an amplifier, this LPA have the average output power is about 30W and the IMD value is below about 60dBc without correcting the circuit. In camparision with an amplifier without feedforward system at the same output power, the supposed analog feedforward linear amplifier posseses improved the IMD characteristics of over 23dB.

The Design of the Linear Power Amplifier using Analog Feedforward Linearizer for IMT-2000 Band (아날로그 Feedforward 선형화기를 이용한 IMT-2000대역 선형증폭기 설계)

  • Park, Ung-Hui;Lee, Gyeong-Hui;Gang, Sang-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.285-291
    • /
    • 2002
  • In this paper, the LPA(Linear Power Amplifier) using new analog feedforward linearizer for IMT-2000 frequency band(2110MHz∼2170MHz) is proposed and fabricated. The designed analog feedforward linearizer system possessing the characteristics of stable operation for input power variation is simple structure and small size. When two-tones in IMT-2000 frequency band are applied to an amplifier, this LPA have the average output power is about 30W and the IMD value is below about 60dBc without correcting the circuit. In camparision with an amplifier without feedforward system at the same output power, the supposed analog feedforward linear amplifier posseses improved the IMD characteristics of over 23dB.

Improvement of the Characteristics of Feedforward Power Amplifier using Negative Feedback method (Feedback을 첨가한 IMT-2000용 l0W급 Feedforward 선형 전력 증폭기의 설계 및 제작)

  • 류병하;장중호;김성민;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.345-348
    • /
    • 2000
  • In this paper, A Feedforward Linear Power Amplifier for IMT-2000 which IMD characteristics was improved was designed and fabricated. To improve the main power amplifier IMD characteristics, the Feedback loop was added to basic Feedforward Power Amplifier structure. Therefore, the output power of error amplifier can be reduced, and it is easy to control the linearization circuit to cancel total IMD. The designed power amplifier represented the 40㏈m(l0W) output power and -55㏈C 3rd IMD at Center frequency 2.14㎓ (@5㎒).

  • PDF

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

Feedforward Pitch Control Using Wind Speed Estimation

  • Nam, Yoon-Su;Kim, Jeong-Gi;Paek, In-Su;Moon, Young-Hwan;Kim, Seog-Joo;Kim, Dong-Joon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • The dynamic response of a multi-MW wind turbine to a sudden change in wind speed is usually slow, because of the slow pitch control system. This could cause a large excursion of the rotor speed and an output power over the rated. A feedforward pitch control can be applied to minimize the fluctuations of these parameters. This paper introduces the complete design steps for a feedforward pitch controller, which consist of three stages, i.e. the aerodynamic torque estimation, the 3-dimensional lookup table for the wind seed estimation, and the calculation of the feedforward pitch amount. The effectiveness of the feedforward control is verified through numerical simulations of a multi-MW wind turbine.

A Study on Feedforward System for IMT-2000

  • Jeon, Joong-Sung;Choi, Dong-Muk;Kim, Min-Jung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1176-1185
    • /
    • 2005
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

  • PDF

Optimal Feedforward Frequency Control for Hydro-Power Stations in Power Systems (전력시스템에서 수력발전소에 대한 최적 피이드포워드 주파수 제어)

  • Tak, Hyun-Soo;Ryu, Chang-Sun;Ahn, Tea-Chon;Lee, Jong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.744-747
    • /
    • 1991
  • In this paper, the design of optimal feedforward regulators with the optimal feedforward filters for improving power frequency deviations in an interconnected system, using a polynominal LQG approach, is proposed. The performances of the regulators with the optimal feedforward filters were compared with the frequency feedback regulator only in power system by simulation. The results show that the optimal feedforward regulators reduce the power frequency standard deviation by 25%-60% in the white noise load and the peak deviation in the step load by 8%-27%.

  • PDF

Design and Fabrication of 10W Feedforward Linear Power Amplifier adding Feedback Loop for IMT-2000 (궤한루프를 첨가한 IMT-2000용 10W급 Feedforward 선형 전력 증폭기의 설계 및 제작)

  • 류병하;장중호;김성민;최현철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.187-190
    • /
    • 2000
  • In this paper, A Feedforward Linear Power Amplifier which is appended a feedback loop for IMT-2000 was designed and fabricated. Feedback loop was used to improve the IMD(Inter-Modulation Distortion) characteristics of the main amplifier. And it is easy to cancel IMD on the min path and control IMD cancellation loop, compared with basic Feedforward Linear Power Amplifier. This feedback loop has the same effect of the Predistroter. So, This power amplifier was improved in IMD characteristics to add the effect of Predistroter to basic Feedforward amplifier. And the disigned power amplifier in this paper represented the 40dBm(10W) output and -55dBc 3rd IMD at center frequency 2.14GHz (@10MHz).

  • PDF