• Title/Summary/Keyword: Power factor compensation method

Search Result 86, Processing Time 0.031 seconds

Static VAR Compensator Using PWM Voltage type Converter (PWM전압형 콘버어터에 의한 정지형 무효전력 보상장치)

  • 정연택;이훈구;황락훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.836-846
    • /
    • 1990
  • This paper presents a Static Var Compensator (SVC) system compensating the reactive power for power system, which consists of a voltage type Pulse Width Modulation (PWM) converter and a reactance linking the converter to the source. The system drives the four quadrant modes. The system determines the magnitude of the input voltage, and then compares it with the magnitude of the source voltage by regulating the phase of the SVC about the source. Therefore, the system generates leading compensation currents when the input voltage is larger than the source in magnitude, and lagging compensation currents for smaller input voltage. Reactive power about voluntary load in power system is smoothly compensated by those compensation currents, and also power factor of source is improved. Furthermore, the SVC system using PWM method may improve the source current waveforms by eliminating the 5th and 7th harmonic components from the input voltages.

  • PDF

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

Development of advanced Power Factor Computation Algorithm in Harmonics distorted Distribution System (고조파 왜곡 환경에서 향상된 역률 계측 알고리즘 개발)

  • Lee, Hyun-woo;Park, Young-kyun;Lee, Jinhan;Joung, Sanghyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.121-127
    • /
    • 2016
  • We propose a algorithm to calculate power factor of fundamental waveform in an environment where the voltage and current have been distorted by harmonics. In the proposed power factor computation algorithm, voltage and current are converted to rotating DQ reference frame, and power factor is calculated from active power and reactive power. We compare the proposed method with the conventional power factor measurement method as mathematically. In a condition that voltage and current are distorted by harmonics, the proposed method accurately measure the power factor of fundamental wave, and it is confirmed by simulation using MATLAB. If the proposed power factor measurement method is applied to an automatic power factor control system, a power factor compensation performance can be maximized in harmonic distortion environment. As a result, it is possible to reduce electricity prices, reduce line loss, increase load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

Analysis of the Admittance Component for Digitally Controlled Single-Phase Bridgeless PFC Converter

  • Cho, Younghoon;Mok, Hyungsoo;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.600-608
    • /
    • 2013
  • This paper analyzes the effect of the admittance component for the digitally controlled single-phase bridgeless power factor correction (PFC) converter. To do this, it is shown how the digital delay effects such as the digital pulse-width modulation (DPWM) and the computation delays restrict the bandwidth of the converter. After that, the admittance effect of the entire digital control system is analyzed when the bridgeless PFC converter which has the limited bandwidth is connected to the grid. From this, the waveform distortion of the input current is explained and the compensation method for the admittance component is suggested to improve the quality of the input current. Both the simulations and the experiments are performed to verify the analyses taken in this paper for the 1 kW bridgeless PFC converter prototype.

A Study on the Compensation of Reactive Power by III, IV Quadrant Phase Controlled Rectifier (III, IV상한 위상제어정류기에 의한 무효전력 보상에 관한 연구)

  • 정연택;서영수;이사영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.3
    • /
    • pp.76-83
    • /
    • 1983
  • This paper describes the method of operating the phase controlled rectifier by controlling the firing angle in III, IV quadrant to absorb the lrading reactive power and of improving the waveform of ac current by driving dual converter. The system is intended to compensate the reactive power for any lagging load. Also, by the above method this paper enables us to improve the power factor and waveform referred to the source current and the dc output voltage in the converter.

  • PDF

A Study on a Current Control Based on Model Prediction for AC Electric Railway Inbalance Compensation Device (교류전력 불평형 보상장치용 모델예측기반 전류제어 연구)

  • Lee, Jeonghyeon;Jo, Jongmin;Shin, Changhoon;Lee, Taehoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.490-495
    • /
    • 2020
  • The power loss of large-capacity systems using single-phase inverters has attracted considerable attention. In this study, optimal switching sequence model prediction control at a low switching frequency is proposed to reduce the power loss in a high-power inverter system, and a compensation method that can be utilized for model prediction control is developed to reduce errors in accordance with sampling values. When a three-level, single-phase inverter using a switching frequency of 600 Hz and a sampling frequency of 12 kHz is adopted, the power factor is improved from 0.95 to 0.99 through 3 kW active power control. The performance of the controller is also verified.

The Reactive Power Compensation for a Feeder by Control of the Power Factor of PWM Converter Trains (PWM 컨버터 차량의 역률 제어를 통한 급전선로의 무효전력 보상)

  • Kim, Ronny Yongho;Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • PWM converter trains exhibit excellent load characteristics in comparison with conventional phase-controlled trains with low power factors, as they can be operated at power factors which are close to unity by means of a voltage vector control method. However, in the case of a high track density or extended feeding, significant line losses and voltage drops can occur. Instead of operating these trains at a fixed unity power factor, this paper suggests a continuous optimal power factor control scheme for each train in an effort to minimize line losses and improve voltage drops according to varying load conditions. The proposed method utilizes the steepest descent algorithm targeting each car in the same feeding section to establish the optimized reactive power compensation levels that can minimize the reactive power loss of the feeder. The results from a simulation of a sample system show that voltage drops can be improved and line losses decreased.

An Active Power Filter For A Compensation Of Power Factor and Harmonic Currents (역률개선 및 고조파 보상을 위한 능동전력필터)

  • Kim, Yong-Ho;Ahn, Bok-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.447-450
    • /
    • 1991
  • A novel effective calculation method of the compensation current commands of active power filter using voltage source PWM converter is proposed on the basis of the instantaneous reactive power theory. The load currents and the phase of the source voltages are used for the simplification of the calculations and the reduction of the its time. And the calculation of the currents is performed by DSP 32014 within 50 uSEC. For reducing the DC voltage and saving the costs, a passive power filters are used. The simulation results of the effects of the active power filter with a passive filter are presented.

  • PDF