• Title/Summary/Keyword: Power division ratio

Search Result 588, Processing Time 0.03 seconds

Experimental Study on the Hydraulic Power Steering System Noise (유압식 동력 조향장치의 소음에 대한 실험적 연구)

  • Lee, Byung-Rim;Choi, Young-Min;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • Pressure ripple, vibration and noise level are measured in each parts of the power steering system. MD(Mahalanobis Distance) is calculated by using MTS(Mahalanobis Taguchi System) with measured data, and noise sensitive components are selected. The components applied detail design parameters are made and data is measured. After that MD is calculated also. Mean value and SN ratio can be obtained from the MD. Effective noise reduction technique and dominant design parameters in hydraulic power steering system are introduced.

Power Efficient Modulation Scheme $CDM^2-MAP$ for Low Complexity and High Performance

  • Khuong Ho Van;Kong Hyung-Yun;Nam Doo-Hee
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Quadrature amplitude modulation-spread spectrum (QAM-SS) and code division multiplexing (CDM) are multi-level modulation schemes with high performance but they cause a large peak-average power ratio (PAPR). Therefore, this paper proposes a novel modulation scheme for high-rate transmission which follows a sequence of CDM-mapping-CDM not only to correct the above-mentioned problem but also offer a high flexibility in obtaining arbitrary multilevel modulation with very low implementation complexity and high performance.

DDPWM Based Control of Matrix Converters

  • Li, Yu-Long;Choi, Nam-Sup;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.535-543
    • /
    • 2009
  • In this paper, pulse-width modulation (PWM) control strategy of various topologies of matrix converters is presented, which is based on direct duty ratio PWM (DDPWM). Because the DDPWM method has the characteristics of the inherent per-phase modular structure, it can be effectively applied to single-phase, two-phase and three-phase four-leg matrix converters as well as the common three-phase to three-phase matrix converter. Also, this paper treats command generation method in each matrix converter. The feasibility and validity of the proposed method are verified by experimental results.

An Adaptive Tone Injection Scheme using Clipping Noise for PAPR Reduction of OFDM Signals (OFDM 신호의 PAPR 감소를 위해 클리핑 잡음을 이용한 적응적 톤 삽입 기법)

  • Yang, Mo-Chan;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1076-1084
    • /
    • 2009
  • We propose an ATI (Adaptive Tone Injection) scheme based on clipping noise for PAPR (Peak-to-Average Power Ratio) reduction of OFDM (Orthogonal Frequency Division Multiplexing) signals. The proposed scheme is composed of three steps: clipping, tone selection, and TI procedures. In the first step, the peak samples in the IFFT (Inverse Fast Fourier Transform) outputs are scaled down by clipping. In the second step, the sub-carrier position where the power of the clipping noise is the maximum, is selected. Finally, the generic TI procedure is performed. Simulation results show that the proposed scheme does not require all the possible combinations of the original TI procedures, while maintaining the PAPR reduction performance.

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

A Study on Ammonia Partial Oxidation over Ru Catalyst (Ru 촉매에서의 암모니아 부분산화에 대한 연구)

  • SANGHO LEE;HYEONGJUN JANG;CHEOLWOONG PARK;SECHUL OH;SUNYOUP LEE;YONGRAE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.786-794
    • /
    • 2022
  • Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.

Series Capacitor Compensated Resonant High Frequency Inverter with ZCS-Pulse Density Modulation fey Induction Heating Fixing Roller in Copy Machine

  • Ahmed T.;Shirai H.;Gamage L.;Soshin K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.499-502
    • /
    • 2003
  • This paper presents the voltage source type half bridge lossless auxiliary inductor snubber assisted series capacitor compensated resonant high frequency inverter for induction heated fixing roller in copy machines. This high-frequency inverter treated here can completely achieve zero current soft switching (ZCS) commutation for wide power regulation range under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady-state operating principle is originally presented fur a constant frequency PDM control strategy under a ZCS operation commutation, together with its output effective power regulation characteristics-based on the PDM strategy. The experimental operating performances of this ZCS-PDM high frequency inverter using IGBTs are illustrated as compared with computer simulation ones. Its power losses and actual efficiency are evaluated and discussed on the basis of simulation and experimental results.

  • PDF

Peak-to-Average Power Ratio Reduction Using N-tuple Selective Mapping Method for MC-CDMA

  • Ali, Sajjad;Chen, Zhe;Yin, Fuliang
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.338-347
    • /
    • 2015
  • The multi-carrier transmission signal in Multi-Carrier Code Division Multiple Access (MC-CDMA) has a high peak-to-average power ratio (PAPR), which results in nonlinear distortion and deteriorative system performance. An n-tuple selective mapping method is proposed to reduce the PAPR, in this paper. This method generates $2^n$ sequences of an original data sequence by adding n-tuple of n PAPR control bits to it followed by an interleaver and error-control code (ECC) to reduce its PAPR. The convolutional, Golay, and Hamming codes are used as ECCs in the proposed scheme. The proposed method uses different numbers of the n PAPR control bits to accomplish a noteworthy PAPR reduction and also avoids the need for a side-information transmission. The simulation results authenticate the effectiveness of the proposed method.

Receive Diversity for OFDM Systems with Cochannel Interference (동일 채널 간섭을 고려한 OFDM 시스템의 수신 다이버시티 기법)

  • Seo Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.222-228
    • /
    • 2006
  • In this paper, we propose a receive diversity method for orthogonal frequency division multiplexing (OFDM) systems with cochannel interference. In the method, combining is done in the frequency domain by using the subcarrier based maximum ratio combining (MRC) method. For MRC, we exploit the power of cochannel interference as well as the power of channel noise. The accuracy of the power estimate of interference plus noise is enhanced by averaging the initial estimates over the correlated subchannels where the coherency between the subchannel gains comes from the limited delay spread of the channel. Simulation results show that the proposed method yields 2-3.5dB gain of signal to noise ratio compared to the conventional MRC method and less than 1 dB difference to the ideal case.

TRIGGERING AND ENERGETICS OF A SINGLE DROP VAPOR EXPLOSION: THE ROLE OF ENTRAPPED NON-CONDENSABLE GASES

  • Hansson, Roberta Concilio
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1215-1222
    • /
    • 2009
  • The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE-NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series.