Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.786

A Study on Ammonia Partial Oxidation over Ru Catalyst  

SANGHO LEE (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
HYEONGJUN JANG (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
CHEOLWOONG PARK (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
SECHUL OH (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
SUNYOUP LEE (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
YONGRAE KIM (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 786-794 More about this Journal
Abstract
Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.
Keywords
Ammonia; Partial oxidation; Auto-thermal cracking; Ru catalyst; Hydrogen;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 S. Frigo and R. Gentili, "Analysis of the behaviour of a 4stroke Si engine fuelled with ammonia and hydrogen", International Journal of Hydrogen Energy, Vol. 38, No. 3, 2013, pp. 16071615, doi: https://doi.org/10.1016/j.ijhydene.2012.10.114.   DOI
2 S. Frigo, R. Gentili, G. Ricci, G. Pozzana, and C. Comotti, "Experimental result using ammonia plus hydrogen in a S.I. engine", Lecture Notes in Electrical Engineering, Vol. 191, 2013, pp. 6576, doi: https://doi.org/10.1007/9783642337772.   DOI
3 S. Frigo, R. Gentili, and F. De Angelis, "Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen. In: SAE/JSAE 2014 Small Engine Technology Conference & Exhibition", SAE Technical Paper, Vol. 32, No. 82, 2014, pp. 2014320082, doi: https://doi.org/10.4271/2014320082.   DOI
4 M. Comotti and S. Frigo, "Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines", International Journal of Hydrogen Energy, Vol. 40, No. 33, 2015, pp. 1067310686, doi: https://doi.org/10.1016/j.ijhydene.2015.06.080.   DOI
5 M. Koike, T. Suzuoki, T. Takeuchi, T. Homma, S. Hariu, and Y. Takeuchi, "Coldstart performance of an ammonia-fueled spark ignition engine with an onboard fuel reformer", International Journal of Hydrogen Energy, Vol. 46, No. 50, 2021, pp. 2568925698, doi: https://doi.org/10.1016/j.ijhydene.2021.05.052.   DOI
6 J. Yang, A. Fathi Salem Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, "A stability study of ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells", ACS Applied Materials & Interfaces, Vol. 7, No. 51, 2015, pp. 2870128707, doi: https://doi.org/10.1021/acsami.5b11122.   DOI
7 J. H. Woo, T. Y. Kim, J. E. Kim, B. O. Cho, S. Y. Jung, S. M. Park, S. C. Lee, and J. C. Kim, "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 6, 2021, pp. 464469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464.   DOI
8 R. Cavaliere da Rocha, M. Costa, and X. S. Bai, "Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission", Fuel, Vol. 246, 2019, pp. 2433, doi: https://doi.org/10.1016/j.fuel.2019.02.102.   DOI
9 C. Arnaiz del Pozo and S. Cloete, "Technoeconomic assessment of blue and green ammonia as energy carriers in a lowcarbon future", Energy Conversion and Management, Vol. 255, 2022, pp. 115312, doi: https://doi.org/10.1016/j.enconman.2022.115312.   DOI
10 P. Dimitriou and R. Javaid, "A review of ammonia as a compression ignition engine fuel", International Journal of Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 70987118, doi: https://doi.org/10.1016/j.ijhydene.2019.12.209.   DOI
11 S. Giddey, S. P. S. Badwal, C. Munnings, and M. Dolan, "Ammonia as a renewable energy transportation media", ACS Sustainable Chemistry & Engineering, Vol. 5, No. 11, 2017, pp. 1023110239, doi: https://doi.org/10.1021/acssuschemeng.7b02219.   DOI
12 B. Stoeckl, M. Preininger, V. Subotic, H. Schroettner, P. Sommersacher, M. Seidl, S. Megel, and C. Hochenauer, "Ammonia as promising fuel for solid oxide fuel cells: experimental analysis and performance evaluation", ECS Transactions, Vol. 91, No. 1, 2019, pp. 16011610, doi: https://doi.org/10.1149/09101.1601ecst.   DOI
13 S. Yoon, S. Lee, and J. Bae, "DDevelopment of a self-sustaining kWeclass integrated diesel fuel processing system for solid oxide fuel cells", International Journal of Hydrogen Energy, Vol. 36, No. 16, 2011, pp. 1030210310, doi: https://doi.org/10.1016/j.ijhydene.2010.10.001.   DOI
14 J. Cha, Y. S. Jo, H. Jeong, J. Han, S. W. Nam, K. H. Song, and C. W. Yoon, "Ammonia as an efficient COXfree hydrogen carrier: fundamentals and feasibility analyses for fuel cell applications", Applied Energy, Vol. 224, 2018, pp. 194204, doi: https://doi.org/10.1016/j.apenergy.2018.04.100.   DOI
15 S. Lee, Y. Choi, C. Park, H. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dualfuel engine", Trans. of the Korean Hydrogen and New Energy Society, Vol. 31, No. 4, 2020, pp. 372379. doi: http://dx.doi.org/10.7316/KHNES.2020.31.4.372.   DOI
16 T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, and K. Eguchi, "Comparative study of ammonia-fueled solid oxide fuel cell systems", Fuel Cells, Vol. 17, No. 3, 2017, pp. 383390, doi: https://doi.org/10.1002/fuce.201600165.   DOI
17 M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, and K. Eguchi, "Development of 1 kWclass ammoniafueled solid oxide fuel cell stack", Fuel Cells, Vol. 20, No. 1, 2020, pp. 8088, doi: https://doi.org/10.1002/fuce.201900131.   DOI