• Title/Summary/Keyword: Power coupler/divider

Search Result 40, Processing Time 0.022 seconds

Fabrication of Six-port Phase Correlator using Multi-section Power Divider and Coupler (다중결합 Power divider 와 Coupler를 이용한 Six-port 위상 상관기 제작)

  • Yu, Jae-Du;Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • The general six-port phase correlator is comprised of a Wilkinson power divider and three $90^{\circ}$ hybrid coupler, which has less than 10 % bandwidth. In this paper, the six-port phase correlator using two section power divider has 33 % bandwidth and external matching $90^{\circ}$ hybrid coupler with 15 % bandwidth was designed at the center frequency of 2.5 GHz. The simulation result by ADS2003A indicates that RF port and LO port of proposed six-port phase correlator got wide frequency bandwidth of 14 % for VSWR of 1.5. The fabricated six-port phase correlator has a bandwidth of 12 % similar to the simulation result. The maximum phase discrepancy and insertion loss are $6^{\circ}$ and 2.5 dB over a bandwidth, respectively.

Design and Fabrication of Six-port Phase Correlator using Wideband Two Section power divider and Matching Hybrid Coupler (광대역성 2단 Power divider와 매칭 Hybrid coupler를 이용한 Six-port 위상 상관기 설계 및 제작)

  • Yu, Jae-Du;Kim, Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.129-132
    • /
    • 2008
  • The generally six-port phase correlator is comprised of a wilkinson power divider and three $90^{\circ}$ hybrid coupler, got bandwidth performance of less than 10%. in this paper, the six-port phase correlator using two section power divider has 33% bandwidth and external matching hybrid coupler has 15% bandwidth was designed with the center frequency of 2.5GHz. Analysis of the simulation result indicates that RF port and LO port got frequency bandwidth of 13%. Insert loss performance of fabricated six-port phase correlator is incremented, but bandwidth resembles simulation result. And phase tolerance within bandwidth is less than $90^{\circ}$.

  • PDF

Compact and Wideband Correlator with Metamaterial Hybrid Rat-Race Coupler (Metamaterial 하이브리드 Rat-Race Coupler를 이용한 소형화된 광대역 코릴레이터)

  • Kim, Yang-Hyun;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.147-151
    • /
    • 2009
  • A wideband correlator, with 45% relative bandwidth is proposed at the frequency range of 3.1-5.1GHz. The structures of the correlator components such as the delay line and the Wilkinson power divider are designed to be realized in transmission line form using the Agilent's Advanced Design System (ADS). The correlator made by using three unique wideband 3-dB couplers, rat-race coupler and one 3-dB wilkinson power divider to reach the required bandwidth. The insertion loss, amplitude imbalance and phase imbalance between ports are presented. The proposed correlator makes compact size better than correlator of conventional structure.

A variable power divider circuit using the combine characteristic of the branchline coupler (브랜치라인 커플러 결합을 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • The proposed variable pawer divider in this paper is composed of one equal power 2-way Wilkinson power divider, two variable phase shifters with 90-degree phase variation to be connected two output paths of the 2-way power divider, and one branchline coupler to combine output signals of two variable phase shifter. The proposed variable power divider can theoretically have an arbitrary power division ratio ranging from ${\infty}:1$ to ${\infty}:1$ due to 90-degrees phase variation of two phase shifter. The proposed power divider circuit fabricates on laminated TLX-9(h=20 mil, er=2.5; Taconic) with a center frequency of 1.7 GHz. The power division ratio of the fabricated prototype varies from about 1:100 to 200:1, with an input reflection characteristic(S11) of below -16 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.65-1.75 GHz.

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

The variable power divider circuit to use the ring-hybrid coupler (링-하이브리드 커플러를 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • This paper introduces a new variable power divider circuit with an arbitrary power division ratio ranging from $1:{\infty}$ to ${\infty}:1$. The proposed power divider circuit consists of one branch-line coupler to be a good input matching characteristic, two variable phase shifters with 90-degree phase variation to be connected two output paths of the branch-line coupler, and one ring-hybrid coupler to combine output signals of two variable phase shifter. The power division ratio between the two output ports of the proposed power divider can be easily controlled by the phase variation of the two phase shifter. The proposed power divider circuit fabricates on laminated RF-35 (h = 20 mil, er=3.5; Taconic) with a center frequency of 2 GHz. The power division ratio of the fabricated prototype varies from about 1:1000 to 5000000:1, with an input reflection characteristic(S11) of below -20 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.9-2.1 GHz.

Design of Wide-Band 6-Port Network for Noise Parameter Measurement Using 3-Section Wilkinson Power Divider and Slot-Coupled Directional Coupler (3단 윌킨슨 전력분배기와 Slot-Coupled 방향성 결합기를 활용한 잡음 파라미터 측정용 광대역 6-포트 회로망의 설계)

  • Lee, Dong-Hyun;Lee, Chang-Dae;Lee, Chan-Woo;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • In this paper, a 2~18 GHz wideband 6-port network is designed and fabricated to extend the measurement frequency bandwidth of noise parameter measurement method using 6-port network. In order to design a broadband 6-port network, a wilkinson power divider and a directional coupler with wideband characteristics are designed. The wilkinson power divider is designed as a three-section structure to achieve wideband characteristics. The direction coupler is designed as a three-section structure and slot-coupled structure using multi-layer substrate to obtain wideband characteristics. A wideband 6-port network is designed and fabricated combining the designed power divider and coupler. The measured results of the fabricated 6-port network for the 2~18 GHz band show characteristics applicable to the noise parameter measurement method.

Analysis and Design of Power Divider Using the Microstrip-Slotline Transition in Millimeter-Wave Band (밀리미터파 대역에서의 마이크로스크립-슬롯라인을 이용한 전력분배기의 해석 및 설계)

  • Jeong, Chulyong;Jeong, Jinho;Kim, Junyeon;Cheon, Changyul;Kwon, Youngwoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.489-493
    • /
    • 1999
  • In this paper, an analysis of microstrip-slotline transition is performed using a 3D vector Finite Element Method(FEM). Artificial anistropic absorber technique is employed to implement an matching boundary condition in FEM. On the base of the analysis, power divider/combiner is designed. The structure of the power combiner already developed are Branch-line coupler, Rat-race coupler, Wilkinson coupler, Lange coupler, etc. Which are all planar, If the frequency goes up, the coupling efficiency of these planar couplers is decreased on account of skin loss. Especially, in millimeter-wave band, the efficiency of more than two ways combiner is radically reduced, so that application in power amplifier circuit is almost impossible, Microstrip-slotline transition structure is a power combining technique integrated into wave-guide, so that the loss is small and the efficiency is high. Theoretically, we can mount several transistors into the power-combiner. This makes it possible to develop a high power amplifier. The numerically calculated performances of the device that is, we believe, the best are compared to the experimental results in Ka-Band(26.5GHz-40GHz).

  • PDF

The Study on Highly Miniaturized Active 90°C Phase Difference Power Divider and Combiner for Application to Wireless Communication (무선 통신 시스템 응용을 위한 초소형화된 능동형 90°C 위상차 전력 분배기와 결합기에 관한 연구)

  • Park, Young-Bae;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.144-152
    • /
    • 2009
  • This paper propose highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner for application to wireless communication system. The conventional passive $90^{\circ}C$ power divider and combiner cannot be integrated on MMIC because of their very large circuit size. Therefore, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner are required for a development of highly integrated MMIC. In this paper, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner employing InGaAs/GaAs HBT were designed, fabricated on GaAs substrate. According to the results, the circuit size of fabricated active $90^{\circ}C$ phase difference power divider and combiner were $1.67{\times}0.87$ mm and $2.42{\times}1.05$ mm, respectively, which were 31.6% and 2.2% of the size of conventional passive branch-line coupler. The output gain division characteristic of proposed divider circuit showed 8.4 dB and 7.9 dB respectively, and output phase difference characteristic showed $-89.3^{\circ}C$. The output gain coupling characteristic of proposed combiner circuit showed 9.4 dB and 10.5 dB respectively, and output phase difference characteristic showed $-92.6^{\circ}C$. The highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner exhibited good RF performances compared with the conventional passive branch-line coupler.

Design and Fabrication of S-band Ultra High Power Transistorized Amplifier (마이크로파대 고출력 트란지스터 증폭기의 설계와 시작)

  • 심재철;김종련
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.5
    • /
    • pp.7-14
    • /
    • 1977
  • Conventionally, a TIVT has been used for high power amplification in the microwave frequency range. However, an ultra-high-power amplifier in the 2GHz range has successfully been designed and fabricated employing high power transistors developed recently and available commercially. In the design of the amplifier, a balanced-pair configuration is adopted in order to obtain very high microwave power, and a good impedance matching is achieved by making use of microstripline techniques. For the RF power divider as well as combiner, an approach of stripline directional coupler isadopted because of its easiness in fabrication. The coupler so designed and fabricated indicates a satisfactory performance as a quadrature hybrie coupler. Measurements on the amplifier developed for an immediate commercial application also exhibit excellent overall performance characteristics RF power output, 14 watts, gain 14dB, frequency bandwidth, 160MHz, effciency 40%.

  • PDF