• Title/Summary/Keyword: Power conditioning operation

Search Result 227, Processing Time 0.03 seconds

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

Dynamic model and simulation of microturbine generation system for islanding mode operation (마이크로터빈발전시스템 독립운전을 위한 동적 모델링 및 시뮬레이션)

  • Hong, Won-Pyo;Cho, Jea-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.453-457
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market. In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for isolated operation. The system comprises of a Permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in islanding operation mode of a DG system.

  • PDF

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

Numerical Analysis Dynamometer (Water Brake) Using Computational Fluid Dynamic Software

  • Cahyono, Sukmaji Indro;Choe, Gwang-Hwan;Sinaga, Nazaruddin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.103-111
    • /
    • 2008
  • One of the most popular internal combustion engines is the engine in the transportation device. Power is a parameter that shows the capabilities of an object that gives energy, for example the internal combustion engine. Power in this engine is measured by a device called dynamometer. The CFD (Computational Fluid Dynamic) fluent software was simulated several impeller variables to absorb power of engine. With that result, we knew the biggest dynamometer absorber power, cheapest and easy to be made. The hydraulic dynamometer is selected type of dynamometer as the result of design process. The basic principle of a hydraulic dynamometer is the same as centrifugal pump but it has low pump efficiency. The results of the test are maximum power and torque of the tested engine and the operation area of the selected hydraulic dynamometer.

  • PDF

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Electric Energy Saving System for Lighting with Power Conditioning (전력품질개선 기능을 갖는 조명 에너지 절약 시스템)

  • Kwon, H.D.;Park, C.S.;Jo, S.P.;Ko, S.H.;Lee, S.W.;Lee, S.R.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.151-153
    • /
    • 2008
  • This paper deals with the electric energy saving system for lighting with power conditioning, which aims at the integration of power quality improvement and energy saving. The system consists of a CCVSI(Current-Controlled Voltage Source Inverter) and VCVSI(Voltage-Controlled Voltage Source Inverter). The CCVSI is connected in parallel to a grid, which can be operated to compensate the reactive power demanded by nonlinear and variation loads. The VCVSI is connected to the CCVSI through the DC capacitor (DC side) and in series on the AC side(lighting load), which can perform the energy saving. The operation of the proposed system is confirmed through the simulation and its usefulness is discussed.

  • PDF

Power Conditioning System for SMES Using Thyristor PWM Converter (싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기)

  • Han, Byung-Moon;Beak, Seung-Taek;Lee, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1061-1063
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

Power Conditioning System for SMES Using Thyristor PWM Converter (싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기)

  • Han, Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.293-299
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Development of the Inverter System with UPS Function for the Air-Conditioning Blower (UPS 기능을 갖는 A/C Blower용 Inverter 시스템 개발)

  • Lim, Seung-Beom;Lee, Yun-Ha;Ji, Jun-Keun;Mok, Hyung-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.345-346
    • /
    • 2010
  • The HVAC(Heating Ventilation and Air Conditioning) system is only controlled by turn on/turn off operations against to AC 380V input. Therefore, the efficiency of the system is reduced and noise occurs. Also, the blower is shut down at the AC power failure. In this paper, the inverter system with UPS function for the A/C(Air Conditioning) blower is proposed. Proposed inverter system which is powered from the AC and DC voltage can control speed, operation mode, and soft-start time using CAN communication. In case of the CAN communication failure, RS-232 communication could be used to control the hardware directly by the engineer that can solve existing problems. To verify the validity of proposed inverter system, simulations and experiments are carried out.

  • PDF