• Title/Summary/Keyword: Power conditioning operation

Search Result 227, Processing Time 0.026 seconds

Development of Power Conditioning System Control Algorithm for the Parallel Operation of High-Power Fuel Cell System (대용량 연료전지 시스템의 병렬운전을 위한 전력변환기 제어 알고리즘 개발)

  • Lee, Jin-Hee;Baek, Seung-Taek;Choi, Joon-Young;Suh, In-Young;Kim, Do-Hyung;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.65-68
    • /
    • 2008
  • This paper proposes the parallel operation control algorithm of a power conditioning system (PCS) for a distributed Fuel Cell power generation system. A proposed control algorithm is made good a drawback of the conventional control algorithm. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. Simulation results are presented to performance of a proposed control algorithm for the PCS.

  • PDF

Development of Power Conditioning System for High Power Fuel Cell System (대용량 연료전지 발전시스템용 전력변환기 개발)

  • Kang, Ho-Hyun;Lee, Jin-Hee;Baek, Seung-Taek;Jung, Hong-Ju;Chung, Joon-Mo;Suh, In-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.153-156
    • /
    • 2007
  • This paper presents the design, development and performance of a power conditioning system (PCS) for application to a 250kW Molten Carbonate Fuel Cell (MCFC) generation system. A DSP controller was used to control the dc-dc and dc-ac converter operation for grid connection and power injection to the grid. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. A control method for parallel operation of dc-dc converters was proposed and verified. A 250kW prototype was successfully built and tested. Experimental performances are compared to minimum target requirements of the PCS for MCFC.

  • PDF

Power Conditioning System for Grid-connective PV Power Systems (계통 연계 태양광 발전 시스템을 위한 Power Conditioning 시스템)

  • Lee S. R.;Ko S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.38-41
    • /
    • 2002
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks haying non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner ismostley current controlled type. In this paper, the proposed current control algorithm is analyzed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

Development of Low-voltage Seamless Transfer Microgrid on Grid-connected Type Islands by Autonomous Operation (자율운전에 의한 계통연계형 도서의 저압 무순단 마이크로그리드 구축)

  • Kim, Jeong Hun;Kwon, Jung-Min;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.169-176
    • /
    • 2017
  • This paper presents research on low-voltage microgrids to maintain a continuous power supply to critical loads on grid-connected islands in Korea. The low-voltage microgrids of this paper focused on that changes public office buildings into uninterrupted microgrids by autonomous operation. For this, a microgrid controller (MGC) and a power conditioning system (PCS) that allow a seamless transfer between grid-connected and grid-isolated operation are proposed. The proposed PCS operates with a silicon controlled rectifier (SCR) switch and employs a simple structure. It supplies power continuously without operators through a coordinated operation between MGC and PCS. In addition, proposed MG has a schedule operation for minimizing electricity charges and provides ancillary services that enable the utilization of resources according to the operation purpose of utility distribution networks. To demonstrate the uninterrupted low-voltage microgrid proposed in this study, a microgrid was implemented and tested in a public office building in Anjwa Island, Jeollanam-do in Korea. A seamless, autonomous operation history, despite system disturbances, was obtained through a long-term demonstration of operation. The results showed that the proposed microgrid technology can be used to achieve energy resilience in grid-connected island areas.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

Controller Design and By-Pass Structure for the Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Lee, Seong-Jun;Bae, Hyun-Su;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.206-208
    • /
    • 2009
  • In this paper, a systematical controller design method for a twostage grid-connected photovoltaic power conditioning system is proposed. For a pre-stage boost converter to achieve the stable operation in the entire region of solar array, the digital resistive current mode controller is used. This algorithm is very simple to implement with a digital controller and there is no power stage parameter dependency in the controller design. For a post-stage single-phase full-bridge inverter, a PI controller with a feedforward compensation for the inner current control is employed. Furthermore, in case that the operating point of the solar array under varying environmental conditions is higher than the required voltage for the inverter current control, the bypass mode for the boost converter is possible for the more efficient operation. The proposed control scheme is validated through the experiment of the prototype two-stage power conditioning system hardware with a 200W solar array.

  • PDF

Implementation of Current Control Type Inverter for using Power Conditioning of Grid-connective Power System (계통의 Power Conditioning용 전류제어형 인버터의 구현)

  • Lee S. R.;Ko S. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly current controlled type. In this paper, the proposed current control algorithm is analysed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation, experiment results is presented.

  • PDF

High-Efficiency Grid-Tied Power Conditioning System for Fuel Cell Power Generation

  • Jeong, Jong-Kyou;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.551-560
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for the fuel cell power generation, which consists of a 2-stage DC-DC converter and a 3-phase PWM inverter. The 2-stage DC-DC converter boosts the fuel cell stack voltage of 26-48V up to 400V, using a hard-switching boost converter and a high-frequency unregulated LLC resonant converter. The operation of the proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. Based on the simulation results, a laboratory experimental set-up was built with a 1.2kW PEM fuel-cell stack to verify the feasibility of hardware implementation. The developed power conditioning system shows a high efficiency of 91%, which is a very positive result for the commercialization.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.