• 제목/요약/키워드: Power compensator

검색결과 609건 처리시간 0.023초

직렬 전압주입에 의한 순간전압강하 보상기기에 관한 연구 (A Study on the Instantaneous Voltage Drop Compensator through the Series Voltage Injection)

  • 전영환;김지원;전진홍
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.310-317
    • /
    • 2001
  • 동일한 변압기에서 인출된 서로 다른 선로중 하나의 선로에서 고장이 발생하는 경우 다른 선로에서는 순간적인 전압강하 현상을 경험하게 된다. 이렇게 발생되는 순간전압강하 현상은 비록 선로의 계전기에 의해 사고가 제거되기까지의 짧은 기간동안 지속되지만 기기에 따라서는 막대한 피해를 유발할 수 있다. 예로서, 반도체 공장의 정밀 공정중 순간전압강하가 발생하면 공정이 중단되거나 공정의 재시작등으로 인하여 a가대한 경제적 손실을 유발하게 된다. 또한 각종 정밀기기 등에는 기기의 수명저하를 유발하기도 한다. 본 논문에서는 전력계통에 직렬로 연결되는 인버터 시스템을 이용하여 계통에 전압을 주입함으로서 순간전압강하를 보상할 수 있는 시스템에 관하여 연구하고 운전 알고리즘을 제시하였다. 컴퓨터 시뮬레이션과 실험을 통하여 제시한 운전알고리즘의 유효성을 입증하였다.

  • PDF

전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계 (Design of GA-LQ Controller in SVC for Power System Stability Improvement)

  • 허동렬;박인표;정문규;정형환;안병철;김해재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구 (A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation)

  • 박기홍;김태성;김경화;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

첨단 AI 기법을 이용한 전력 변환기의 고성능 제어기 개발 (A Development of Intelligent Robust Precision Control System for Power Conversion System using AI)

  • 고종선;이용재;김규겸;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.92-95
    • /
    • 2001
  • This study presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM fellows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계 (A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System)

  • 오태규;정형환;허동열;이정필
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권7호
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

에너지 절약을 위한 가정용 전력품질보상장치에 관한 특성연구 (Characteristics on Power Quality Compensator for Home Energy Saving)

  • 한후석;이상성;한병문;전영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.41-44
    • /
    • 2003
  • 본 논문에서는 부하의 상태에 따라 능동적으로 추종 및 보상기능을 갖으며, 에너지절약기능 및 고품질을 유지할 수 있는 소형이면서 가격도 저렴한 전력 품질보상장치의 Prototype을 구성하고져 한다. 최근 일반 주택이나 사무실내에 반도체소자 및 전력전자기기의 사용이 급증하면서 이들 기기에서 발생하는 고조파 및 무효전력량이 증가하여 주위의 환경과 전기적 손실이 심각한 문제를 발생한다. 이런 상황 하에서 전력품질에 민감한 부하들이 급증하고 부하의 민감도에 따라 다양한 전력품질을 요구하는 장치가 점점 필요로 하게 되었다. 지금까지 국내 외적으로 이런 문제를 보상하는 소형보상장치는 가전기기 즉 세탁기 냉장고등 각기 개개로 부착하고 있는 것들은 어느 정도 개발되어 사용되고 있으나, 가정용도로 사용하기 위하여 주택전체를 보상하는 기기는 개발이 되어있지 않은 상태에 있다. 따라서 현재까지 국내 외적으로 개발되어온 기기들은 가정용 소형 전력품질의 모니터링 수준이라고 할 수 있다. 따라서 본 논문에서는 기기의 최 말단 즉, 기기자체에 부착하여 사용하는 단순형 보상형태를 확장시켜 소형이면서 에너지 절약이 가능한 가정용으로 적합한 능동 추종형 전력품질 보상장치의 기술에 대한 연구를 하는 것이 목적이다.

  • PDF

공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화 (Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap)

  • 정광석;백윤수
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.