• 제목/요약/키워드: Power compensator

검색결과 609건 처리시간 0.031초

PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선 (Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique)

  • 정세교;이대식
    • 전력전자학회논문지
    • /
    • 제9권4호
    • /
    • pp.356-363
    • /
    • 2004
  • 본 논문에서는 무정전 전원장치와 같이 일정전압 일정주파수(constant voltage and constant frequency; CVCF) 운전에 사용되는 단상 PWM 인버터의 정밀 전압제어 기법을 다루었으며 정상상태에서 전압 오차를 최소화하기 위해 phase-locked loop(PLL) 기법을 이용한 새로운 전압 제어 방법을 제안하였다. 제안된 제어기법에서는 출력 커패시터 전압과 전류를 이용하여 PLL 보상기를 구성하였으며 주제어기에 PLL 보상기를 추가하여 출력 전압의 정상상태 성능을 개선하였다. 제안된 방법의 타당성을 검증하기 위하여 시뮬레이션과 실험을 수행하였으며, 그 결과 기존의 방법에 비해 정상상태 전압제어 성능과 Total Harmonic Distortion(THD)이 현저히 개선됨을 입증할 수 있었다.

속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계 (Design of the Modified PID Speed Controller to Reduce the Speed Ripple)

  • 김홍민;추영배;이동희
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

Investigation of Instability in Multiple Grid-Connected Inverters with LCL Output Filters

  • Asghari, Fariba;Safavizadeh, Arash;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.757-765
    • /
    • 2018
  • This paper deals with the instability and resonant phenomena in distribution systems with multiple grid-connected inverters with an LCL output filter. The penetration of roof-top and other types of small photovoltaic (PV) grid-connected systems is rapidly increasing in distribution grids due to the attractive incentives set forth by different governments. When the number of such grid-connected inverters increases, their interaction with the distribution grid may cause undesirable effects such as instability and resonance. In this paper, a grid system with several grid-connected inverters is studied. Since proportional-resonant (PR) controllers are becoming more popular, it is assumed that most inverters use this type of controller. An LCL filter is also considered at the inverters output to make the case as realistic as possible. A complete modeling of this system is presented. Consequently, it is shown that such a system is prone to instability due to the interactions of the inverter controllers. A modification of PR controllers is presented where the output capacitor is virtually decreased. As a result, the instability is avoided. Simulation results are presented and show a good agreement with the theoretical studies. Experimental results obtained on a laboratory setup show the validity of the analysis.

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

순환 전류를 이용한 병렬 연결된 사이리스터 듀얼 컨버터의 불균형 병렬 운전 보상 기법에 관한 연구 (A Study on the Compensation Method for Unbalance Parallel Operation of Parallel Connected Thyristor Dual Converters using Circulating Current)

  • 김성안;한성우;문동옥;김영우;이창희;조윤현
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.473-480
    • /
    • 2016
  • This study proposes a performance improvement for parallel-connected thyristor dual converters using a circulating current with an unbalanced parallel operation compensator. The proposed control method determines a variable reference value for the voltage PI controller according to voltage error at firing angle control applied to a difference current control. This method uses circulating current control to maintain a stable voltage and excellent current response during parallel operation. The effectiveness of the proposed control is verified with a simulation and an experiment based on the comparison of the performance of the proposed control method with other conventional methods.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어 (High Performance Control of Linear Hybrid Stepping Motor with Force Ripple Compensator)

  • 황태식;석줄기
    • 전력전자학회논문지
    • /
    • 제10권6호
    • /
    • pp.527-533
    • /
    • 2005
  • 선형 하이브리드 스테핑 전동기는 간단한 구조와 저가의 구동 방식으로 위치 제어를 요구하는 일부 반도체 공정 및 사무실 자동화 기기 등에서 최근 각광을 받고 있다. 그러나, 구조가 간단한 반면 이로 인한 릴럭턴스 및 코깅 추력에 의한 리플 때문에 아직까지 고부가가치의 정밀 공정에는 적용이 제한되어 왔다. 본 논문에서는 선형 하이브리드 스테핑 전동기의 추력 리플 발생 원인을 분석하고 이를 통하여 리플 추력을 상쇄하는 고성능 폐루프 제어 방식을 제안한다. 실험실에서 제작된 선형 하이브리드 스테핑 전동기에 대한 다양한 실험 결과를 통하여 해석 및 제안된 방법의 타당성을 검증한다.

AnActive Damping Scheme Based on a Second Order Resonant Integrator for LCL-Type Grid-Connected Converters

  • Chen, Chen;Xiong, Jian;Zhang, Kai
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1058-1070
    • /
    • 2017
  • This paper proposes a novel active damping scheme to suppress LCL-filter resonance with only grid-current feedback control in grid-connected voltage-source converters. The idea comes from the concept of the model reference adaptive control (MRAC). A detailed theoretical derivation is given, and the effectiveness of this method is explained based on its physical nature. According to the control structure of this method, the active damping compensator, which is essentially a second order resonant integrator (SORI) filter, provides an effective solution to damp LCL resonance and to eliminate the need for additional sensors. Compared with extra feedback methods, the cost and complexity are reduced. A straightforward tuning procedure for the active damping method has been presented. A stability analysis is illustrated in the discrete domain while considering a one-step delay. Finally, experimental results are presented to validate the analysis and to demonstrate the good performance of the proposed method.

Studies on a Wind Turbine Generator System using a Shaft Generator System

  • Tatsuta Fujio;Tsuji Toshiyuki;Emi Nobuharu;Nishikata Shoji
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.177-184
    • /
    • 2006
  • In this paper a new dc-link type wind turbine generator system using a shaft generator system, which is widely used for power sources in a ship, is proposed. The basic configuration of the proposed wind turbine generating system is first explained. And the equations expressing the system are derived. Then the steady-state characteristics of the generating system are discussed. We use an experimental system that can simulate the characteristics of a wind turbine in this study, because it is hard to operate an actual wind turbine in a laboratory. In addition, the transient responses of this system are investigated when the velocity of the wind is changed. It is shown that experimental results were very close to the simulated ones, supporting the usefulness of the theory.

전기철도 급전시스템에서 SVC를 이용한 전압불평형 보상에 관한 연구 (A Study on Unbalance Compensation Using SVC in Electric Railway Feeding System)

  • 손국현;최규형;김성일;정호성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3124-3132
    • /
    • 2011
  • Scott transformers have widely used to convert three phases into two phases and compensate the unbalance. Theoretically, the loads of the two secondary phases are same, no unbalance appears in the PCC(point of common coupling). But Due to the uncertainty of traction load, the unbalance are generally presented at the PCC. In this paper The amount of the voltage unbalance is expressed in the ratio of the negative sequence voltages to the positive sequence voltage. We tried to compensate the unbalance using SVC(Static Var Compensator)in an unbalance traction loads state by modeling. The SVC are installed and controlled to provide different amounts of reactive power compensation.

  • PDF