• Title/Summary/Keyword: Power closed-loop control

Search Result 265, Processing Time 0.025 seconds

A Study on the Fuzzy Modifier of PI Control for Improvement of Tracking properties in Induction Motor System

  • Kim, Yuen-Chung;Ahn, Jeong-Joon;Kim, Jae-Mun;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.7-10
    • /
    • 1998
  • Because of simple control algorithm and easy implementation, the conventional PI controller has been widely used in industrial application. But, it is very difficult to find the optimal PI control gain. Therefore, in improperly tuned PI controller or parameter variation, to obtain optimal performance, the novel PI controller, which consist of conventional PI controller and 4-rule based fuzzy logic, are presented in this paper. The novel PI controller which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller or parameter variation. The simulations are performed to verify the capability of proposed control method on induction motor.

  • PDF

High Performance control of Linear Hybrid Stepping Motor with Force Ripple Compensator (추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어)

  • Hwang, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.240-242
    • /
    • 2005
  • The linear hybrid stepping motors (LHSM) has been widely used due to its simple structure and low cost control. Despite of its attractive features, the conventional LHSM has the multiples of 4th times harmonic reluctance force from excitation current and cogging force from space harmonic of permeance. This paper propose a new LHSM, which the mechanical and electrical phase difference are 45$^{\circ}$. The proposed motor shows a unique ability to deliver low detent force and we propose a closed-loop control scheme to attack the ripple force for high performance applications. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed modeling and control scheme.

  • PDF

New capacitor switching schemes to control subsynchronous resonance (SSR을 제어하기 위한 새로운 캐패시터 스위칭방법에 관한 연구)

  • 이훈구;이승환;강승욱;한경희;정연택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • Subsynchronous resonance(SSR) causes a torsional shaft torque on the generator. Damages resulting from the uncontrolled SSR have resulted in the breakdown in the shaft and costs for replacement power. This paper is to determine the feasibility of controlling SSR by the fast modulation of series compensation capacitors. The presence of subsynchronous currents in the system was detected by a subsynchronous relay which was modeled by the transient analysis of control systems(TACS) in electromagnetic transients program (EMTP). The capacitor segments were switched by bi-directional thyristor switches. These were modeled into EMTP. The strategy to switch the capacitors were modeled as a closed loop system. The paper proves that effective control of SSR can be obtained only by the detuning of the system and the removal or blocking of subsynchronous energy from the system. (author). refs., figs., tabs.

  • PDF

Stable Adaptive On-line Neural Control for Wind Energy Conversion System (풍력 발전 계통의 적응 신경망 제어기 설계)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.838-842
    • /
    • 2011
  • This paper proposes an online adaptive neuro-controller for a wind energy conversion system (WECS) that is a highly nonlinear system intrinsically. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing neural network in the controller design in this paper. The proposed adaptive neural control scheme using radial-basis function network (RBFN) needs no system parameters to meet control objectives. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Variable-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator Voltage Regulation Scheme with Static VAR Compensator Controlled by Pl Controller

  • Ahmed Tarek;Nishida Katsumi;Sato Shinji;Nagai Shinichro;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, a Pl controlled feedback closed-loop voltage regulation scheme of the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is designed on the basis of the static VAR compensator (SVC) and discussed in experiment fer the promising stand-alone power independent conditioner. The simulation and experimental results of the three-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvement.

  • PDF

Game Theory for Transmission Power Control of Cognitive Radio (CR의 송신 전력 제어를 위한 게임 이론 연구)

  • Hwang, In-Kwan;Lee, Ryoung-Kyoung;Cho, Hae-Keun;Lim, Yeon-Jun;Ko, Eun-Kyoung;Song, Myoung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.448-454
    • /
    • 2007
  • In this paper, the game theory based power control for CDMA system is studied, which has attained intensive interest as a core artificial intelligent technology fur cognitive Radio and its efficiency is evaluated using performance metrics such as system throughput and fairness. Utility Function for joint user centric and network centric power control is defined and simulation results show that game theory based power control is far better than closed loop power control. The contribution of this raper is to formalize the game theory based power control toward the cognitive radio that recognizes and adapts to the radio communication environments.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.