• Title/Summary/Keyword: Power circulation

Search Result 404, Processing Time 0.021 seconds

Ocean Circulation Model ing of East Sea for Aquatic Dispersion of Liquid Radioactive Effluents from Nuclear Power Plants (원전 액체 방사성 유출물 해양확산 평가를 위한 동해 해수순환 모델링)

  • Chung Yang-Geun;Lee Gab-Bock;Bang Sun-Young;Lee Ung-Gwon;Lee Yong-Sun
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.321-331
    • /
    • 2005
  • Recently. three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed. which are Shin-Korl Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shln-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sites which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first Phase, which Is based on the RIAMOM. The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z-coordinate vertically. Model domain is $126.5^{\circ}E\;to\;142.5^{\circ}E$ of east longitude and $33^{\circ}N\;and\;52^{\circ}N$ of the north latitude. The space of the horizontal grid was $1/12^{\circ}$ to longitude and latitude direction and vortical level was divided to 20. This model uses Generalized Arakawa Scheme. Slant Advection, and Mode-Splitting Method. The input data were from JODC, KNFRDI, and ECMWF. The model ing results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also tarried out by using ARGO Drifter around a nuclear pelter plant site.

  • PDF

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8 (보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang Hwa;Kim, Chang Wan;Kim, Jong Gang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.459-467
    • /
    • 2006
  • In this study, hydraulic and numerical model experiments were performed to analyze and improve the effects of flow-rate increase in the intake canal of Boryeong Thermal Power Plants on the flow condition in the circulation water pump (CWP) chambers. Based on the numerical simulation results, when the flow-rate increased in the circulation water intake canal, the velocity in the canal and vertical vorticities in the circulation water pump chambers increased and hence the vortex occurrence potential would be greatly increased. It was found by performing hydraulic model experiments that the velocity distribution near the bottom in the inlet of the circulation water pump chambers was highly non-uniform while the velocity distribution near the water surface was nearly uniform. To reduce the non-uniformity in the velocity distribution, triangular flow deflectors were devised. The installation of the flow deflectors in the inlet of circulation water pump chambers was successfully to reduce velocity non-uniformities and to remove flow reversal problems.

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Implementation of Electrical Property Assessment System for Overhead Contact Lines (전차선로 전기적 특성 평가 시스템 구현)

  • Oh, Seok-Yong;Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.497-503
    • /
    • 2011
  • Currently in Korea, the simple catenary type overhead contact line system is being applied to both conventional lines and high speed lines of electric railway, and circulation current flowing into the catenary system frequently bring undesirable consequences. Namely, the connector wire has many problems according to a flow of excessive circulation current and arc current on catenary when an electric train runs at high speed. This paper presents the development and application of a real-time data acquisition system designed to measure the electrical characteristics of an overhead catenary system in electric railways. The developed system is capable of storing data of a 25 kV power source in a live wire state through a telemetry environment. The field test results show that the proposed technique and the developed system can be practically applied to measure characteristics of current of an overhead catenary system.

Efficiency and Comfort Properties of Silicon Solar Cell Applied Air Circulation Jacket according to the Incident Angle of Sunlight (실리콘 태양전지를 활용한 공기순환 의복의 태양광 입사각에 따른 효율성 및 쾌적성평가)

  • Lee, Ji-Yeon;Cho, A-Ra;Jung, Ye-Lee;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1806-1816
    • /
    • 2009
  • This study analyzes the efficiency of a solar cell attached to an air circulation jacket. A commercially available silicon solar panel was selected and attached at four spots where the body angle was $40-60^{\circ}$ and voltage ($V_{oc}$, V), current ($I_{sc}$, A), and output power (P, W) were measured to determine the efficiency. The solar panel was applied to the outer jacket that operates with two fans to increase the convection that lowers the body temperature. The heavy work of standing, walking, and sweeping of a street sweeper was simulated in the field test. The microclimate within the jacket (with or without a fan) was measured and the subjective thermal, humidity, and comfort sensations were surveyed. SPSS 12.0 statistical package was used for a t-test and Wilcoxon signed-rank test. The results show that the highest efficiency of the solar cell was at the incident angle of $60^{\circ}$ in terms of voltage, current and output power distribution. The microclimate temperature of the air circulation jacket decreased significantly with the high power of the fan and subjects felt cooler than the jacket with a fan at the incident angle of $60^{\circ}$. Air circulation jackets operated by a silicon solar panel showed a significant cooling effect on the wearers.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive (2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.

A Study on the Performance of Continuously Variable Transmission composed of V-belt Drive and 2K-H type Differential Gear Unit (2K-H형 차동기어장치와 V-belt를 결합한 무단변속기의 성능에 관한 연구)

  • 박재민;김연수;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.739-742
    • /
    • 1997
  • Continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdriver mode. They are not required of a starting device as a torque converter. CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and theoretical efficiency are executed.

  • PDF