• Title/Summary/Keyword: Power circuit design

Search Result 2,260, Processing Time 0.04 seconds

Analysis of HVDC Inverter and Application of Objective Functions for the Optimal Filter Design (직류송전 인버터의 필터 최적설계를 위한 해석 및 목적함수의 선정)

  • 오성철;정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2001
  • This paper proposes several methods to analyze dynamic and static characteristics of HVDC inverter system. The characteristic analysis is essential of the controller and filter design of the HVDC inverter system. Dynamic characteristic can be analyzed with EMTP simulation and static characteristic can be obtained by solving newly proposed load flow equation which includes the filter and load characteristic. New simple per-phase-equivalent circuit is also proposed. In this circuit, HVDC inverter is considered as a current source depending on the on-off status of switch. Dynamic and static characteristic can be analyzed by the proposed per-phase-equivalent circuit. For the optimal filter design, various performance criteria are proposed. The performance index, based on the per-phase-equivalent circuit, is calculated. Voltage harmonics and filter power loss are selected as criteria. Optimization procedure is explained to find optimal passive filter parameters.

  • PDF

Characteristic Analysis and Design of High Frequency Resonant Inverter(SEPP Type) using ZVS (ZVS를 이용한 고주파 공진 인버터(SEPP형)의 특성해석과 설계)

  • 민병재;노채균;김동희;김종해;문창수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 1997
  • This paper has described about principle and form of proposed circuit made use of soft switching technology ZVS(Zero Voltage Switching) to reduce turn on and off loss at switching. Also, the analysis of the proposed circuit has described generally by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. Based on the characteristics value, a method of the circuit design is proposed. In addition, this paper proves the propriety of theoretical analysis in terms of the experimental waveforms. In the future, this proposed inverter shows that it can be practically used as power source system for induction cooker etc.

  • PDF

A Systematic Power Factor Improvement Method for an Electro Acoustic Transducer with Low Coupled Dual Resonances (상호 결합이 적은 두 개의 공진점을 갖는 광대역 전기 음향 변화기를 위한 역률 개선 회로 설계 방법 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.480-486
    • /
    • 2012
  • In the design of electro acoustic transducer, power factor improvement circuit is more required rather than impedance matching if the driving power amplifier has little inner resistance. Many research results have been focused on the power matching circuit designing for transferring maximum power in the wideband. There are few results in the designing study on the power factor improvement for the wide band electro acoustic transducer. In this paper, we propose a new design method on the power factor improvement for the wide band electro acoustic transducer. The proposed method consists of two steps, the chebyschev matching method and the constrained optimization, respectively.

Boost-Half Bridge Single Power Stage PWM DC- DC Converters for PEM-Fuel Cell Stacks

  • Kwon, Soon-Kurl;Sayed, Khairy F.A.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • This paper presents the design of 1 kW prototype high frequency link boost half bridge inverter-fed DC-DC power converters with bridge voltage-doublers suitable for small scale PEM fuel cell systems and associated control schemes. The operation principle of this converter is described using fuel cell modeling and some operating waveforms. The switching mode equivalent circuits are based on simulation results and a detailed circuit operation analysis at soft-switching conditions.

통신위성 전력제어 및 분배장치 설계 및 해석

  • Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • This research presents the design and analysis of PCDU(Power Control & Distribution Unit) of communication satellite. The PCDU of a spacecraft must provide adequate power to each subsystem and payload during mission life, and it also needs high reliability and performance in space environment. A control circuit of the PCDU include bus sensing and filter circuits, error signal amplification circuit, error compensation circuit of SAS(Shunt Assembly Switch) and BPC(Battery Power Converter). The phase margin and DC gain for the designed circuits are analyzed through the frequency response characteristics of the compensated control circuit. And also the transfer function of the battery power converter circuit are discussed at the battery CCCM(Charge Continuous Conduction Mode) and battery C/DCCM(Continuous/Discontinuous Conduction Mode).

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Integrated High Voltage Trigger and Simmer power supply for Xenon Lamp (제논 램프 구동용 트리거 및 지머 통합 회로)

  • Jia, Ziyi;Cho, Chan-Gi;Song, Seung-Ho;Jeong, Woo-choel;Park, Hyun-Il;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.51-53
    • /
    • 2018
  • This paper describes the design and implementation of a circuit consisting of a simmer power supply unit and a series trigger unit that can be applicable to xenon lamp driving. An LCC resonant converter based on the continuous conduction mode (CCM) is applied to the simmer circuit and by using the current output control it is possible to maintain the ionization of the lamp which has the negative resistance load characteristic. At the same time, in order to generate a high voltage, a series trigger circuit which has a number of capacitors and diodes is designed. The generated high trigger output voltage could ionize the xenon gas. This paper explains the configuration and features of the integrated circuit system, and verifies the proposed design and stable operation of the xenon lamp. The experimental and simulation results show the not only rationality but also stability of the proposed circuit.

  • PDF